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1 Introduction

• What is the character of phonological constraints? One potential focus is the

phonetic nature of constraints (see, e.g., Hayes et al., 2004). Another equally

valid question is, what is the computational nature of constraints?

• What are the well-formedness generalizations in the following tone patterns?

High-tones are marked with an acute accent on the vowel (á), low tones un-

marked.

(1) Kagoshima Japanese (Hirayama, 1951; Haraguchi, 1977; Kubozono, 2012)

a. hána ‘nose’ e. haná ‘flower’

b. sakúra ‘cherry blossom’ f. usagı́ ‘rabbit’

c. kagarı́bi ‘watch fire’ g. kakimonó ‘document’

d. kagaribı́-ga “ + NOM h. kakimono-gá “ + NOM

(2) Arigibi (New Guinea; Donohue, 1997)

a. na: ‘finish’ e. umú ‘dog’ h. olaPolá ‘red’

b. tutu: ‘long’ f. nı́mo ‘louse’ i. tuniP2́P2 ‘all’

c. vovoPo ‘bird’ g. mudEbÉ ‘claw’ j. idómai ‘eye’

d. Elaila ‘hot’ f. ivı́o ‘sun’ k. núP2tama ‘bark’

g. Ngı́PEpu ‘heart’

(3) Hirosaki Japanese (somewhat simplified; Haraguchi, 1977)

a. é ‘handle’

b. amé ‘candy’

c. áki ‘autumn’

d. niwatorı́ ‘chicken’

e. kudamóno ‘fruit’

f. toránku ‘trunk’

g. kóomori ‘bat’
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• The above patterns can be translated into the following sets of well-formed strings

of H and L TBUs: set - collection of
unique objects

(4) Kagoshima Japanese:

Well-formed Ill-formed

H, HL, LH, L, LL, HH,

LHL, LLH, LLL, LHH, HLL, HHL, HHH,

LLHL, LLLH, . . . , LLLL, LLHH, LHLL, LHLH, LHHL, LHHH, HLLL, . . . ,

LLLLHL, LLLLLH, . . . LLLHLL, LLLHLH, LLLHHL, LLLHHH, LLHLLL, . . .

(5) Arigibi:

Well-formed Ill-formed

H, L, LL, LH, HL, HH, LHH, HLH, HHL,

LLL, LLH, LHL, HLL, LLHH, LHLH, LHHL, LHHH,

LLLL, LLLH, LLHL, LHLL, HLLL, . . . HLLH, HLHL, HLHH, HHLL, . . .

(6) Hirosaki Japanese:

Well-formed Ill-formed

H, HL, LH, L, LL, HH,

LHL, LLH, HLL, LLL, LHH, HLH, HHL, HHH,

LLLH, LLHL, LHLL, HLLL, LLLL, LLHH, LHLH, LHHL, LHHH, HLLH, . . . ,

LLLLH, LLLHL, LLHLL, . . . LLLLL, LLLHH, LLHLH, . . . , HLLLH, . . .

• Here are a couple of other logically possible well-formedness patterns.

(7) Language X

Well-formed Ill-formed

L, H, LL, HH, HL, LH,

LLL, LHL, HLH, HHH LLH, LHH, HLL, HHL,

LLLL, LLHL, LHLL, LHHL, LLLH, LLHH, LHHH, LHLH,

HLLH, HLHH, HHLH, HHHH, HLLL, HLHL, HHLL,

LLLLL, LLLHL, LLHLL, LLHHL, LLLLH, LLLHH, LLHLH, LLHHH,

LHLLL, LHLHL, LHHHL, HLLLH, . . . LHLLH, . . . , HLLLL, HLLHL, . . .

(8) Language Y

Well-formed Ill-formed

L, LL, HH, LLL, LHH, HLH, HHL, H, HL, LH, HLL, LHL, LLH, HHH,

LLLL, LLHH, LHLH, LHHL, LLLH, LLHL, LHLL,

LHHL, HLHL, HHLL, HHHH, LHHH, HLLL, HHHL,

LLLLL, LLLHH, LLHLH, LLHHL, LLLLH, LLLHL, LLHLL, LLHHH,

LHLLH, LHLHL, LHHLL, LHHHH, LHLLL, LHLHH, LHHLH, LHHHL,

HLHHH, HHLHH, HHHLH, . . . HLLLL, HLLHH, HLHHL, . . .
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• Why are (4)–(6) attested but not Language X and Y?

• This talk is on the basics of applying logic to develop an explicit and restrictive

theory of constraints based on their computational properties.

– We get a clear understanding that representation really matters and a precise

way of studying the relationship between representation and expressivity

– These characterizations are related to other computational characterizations,

and thus can inform explicit and restrictive theories of phonological trans-

formations and phonological learning.

2 Basic string models

2.1 String sets

• A string is a sequence of symbols taken from an alphabet Σ. Let Σ∗ denote the string, Σ, Σ∗

set of all possible strings over Σ. This set includes λ, the empty string, or string empty string (λ)
of length 0. Let w · v denote the concatenation of two strings w and v. w · v

• All of the strings in (6) through (8) are from Σ∗ where Σ = {H, L}. The patterns
of well-formed strings in (6) through (8) are subsets of Σ∗. The problem, then, subset - a set X is a

subset of Y if all the
members of X are also
members of Y

is how to distinguish the set of well-formed strings from the rest of Σ∗ (i.e., the

possible, yet ill-formed, strings). Here, we will see how to do this with logical

statements referring to properties of the strings.

• We will need to use the word boundary symbols ⋊ and ⋉ to mark the beginning ⋊, ⋉

and ends of strings. Let ⋊Σ∗
⋉ refer to the strings in Σ∗ delineated with ⋊ and ⋊Σ

∗
⋉

⋉. For example, LLHL is a string in Σ∗, so ⋊LLHL⋉ is a string in ⋊Σ∗
⋉.

2.2 Substructures

• The basic property of a structure we will use to create a logical language is structure - a set of
elements and relations
between those elements

whether or not it contains a particular substructure. We’ll look at two kinds of

substructure
substructures over strings. The first are substrings.

Definition 1 (substring) A string u is a substring of another string w iff w = substring

v1 · u · v2, where v1 and v2 are any other two strings (including λ).

• In other words, a substring is a contiguous ‘chunk’ of another string. For exam-

ple, ⋊L is a substring of ⋊LLHL⋉, because ⋊LLHL⋉= λ·⋊L·LHL⋉.
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(9) What are some other substrings of ⋊LLHL⋉?

• A theory of tonal well-formedness based on substrings of strings over {H, L}
claims that humans pay attention to contiguous chunks of TBUs of some finite

size, focusing on whether each TBU is H or L.

3 A simple logic

3.1 Conjunctions of negative literals

• A logic is a set of statements built through taking basic statements referring to logic

properties of structures and connecting with logical connectives (e.g., ∧, ∨, ¬)
and, for some logics, quantifiers.

• A logical statement can be interpreted as a grammar specifying a subset of struc-

tures that satisfy the statement.

• We’ll focus on conjunctions of negative literals, or logical statements which

specify a list of banned substructures. This very restrictive kind of logic is a sub-

logic of full propositional logic over structures, in which the basic statements or

literals are substructures. An example where the substructures are substrings is

given in (10).

(10) ¬HL∧¬HH

A more rigorous definition of literals using model theory are given in the Ap-

pendix, but for the current purposes an informal definition is sufficient.

Definition 2 (literal) Given a set S of structures, a statement φ is a literal if it is literal

a substructure of some structure in S.

• This is a very general definition, and we’ll see in a moment how to vary the kinds

of structures and the kinds of substructures we talk about. First, let’s focus on

strings and substrings.

Definition 3 (substring literal) Given an alphabet Σ, a statement φ is a sub-

string literal if it is a substring of some string in ⋊Σ∗
⋉. substring literal
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(11) Some substring literals assuming again the alphabet is {L,H} are...

Definition 4 (Satisfaction of a literal) For a literal φ, a structure s satisfies φ satisfaction (|=)

(written s |= φ) if φ is a substructure of s.

(12) What are some substring literals that ⋊LLHL⋉ satisfies? What are some

literals that it doesn’t satisfy?

Definition 5 (Conjunction of negative literals) A statement φ is a conjunction

of negative literals (CNL) if it is of the form conjunction of
negative literals (CNL)

¬ℓ1 ∧ ¬ℓ2 ∧ ¬ℓ3 ∧ ... ∧ ¬ℓn

where each ℓi is a literal.

• The symbols ¬ and ∧ are the standard Boolean ‘not’ and ‘and’ connectives. A

statement ¬ℓ1∧¬ℓ2∧¬ℓ3∧ ...∧¬ℓn thus means “Don’t contain any of s1 through

sn as substructures.” Formally,

Definition 6 (Satisfaction of a CNL) For a CNL φ = ¬ℓ1∧¬ℓ2∧¬ℓ3∧ ...∧¬ℓn
and a structure s, s |= φ iff for each ℓi, s 6|= ℓi (s does not satisfy ℓi).

(13) What is a CNL that all and only well-formed strings in Kagoshima

Japanese satisfy?

(14) Is there a CNL that describes all and only the well-formed strings in

Language X?
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3.2 CNLs and computation

• A CNL thus can serve as a grammar which picks out, from a universal set of

structures, a subset of structures that are well-formed according to the CNL. With

substring literals, the sets of strings describable by CNLs are the Strictly Local

(SL) formal languages (McNaughton and Papert, 1971). SL is a natural class

of patterns in that there are other characterizations of them. For example, the

SL languages are describable by tiling grammars (Rogers et al., 2013) and finite-

state acceptors whose states correspond to substrings of size k − 1 for some k

(McNaughton and Papert, 1971).

• Furthermore, there is a clear cognitive interpretation of evaluating the well-formedness

of a string with respect to a CNL: scanning through the string with a window of

a fixed size (Rogers et al., 2013), as illustrated in Fig. 1. It is this nature that al-

lowes SL languages to be learned from positive data (Garcı́a et al., 1990; Heinz,

2010b).

a. ⋊ L L H L ⋉

X ⋊LL

⋊ L L H L ⋉

X LLH

⋊ L L H L ⋉

X LHL

⋊ L L H L ⋉

X HL⋉

b. ⋊ L H L L ⋉

X ⋊LH

⋊ L H L L ⋉

X LHL

⋊ L H L L ⋉

✖ HLL

Figure 1: Evaluating⋊LLHL⋉ and ⋊LHLL⋉

• The above characteristics draw from the restrictiveness of CNLs as a logical lan-

guage. CNLs are at the least expressive of a long list of logical grammars, each

more powerful than the next.

• For example, propositional logic, which allows literals to be combined with the propositional logic

full set of boolean connectives (∧,∨,¬,→), can capture patterns that CNLs can-

not. The language X pattern is one of those patterns; its propsitional statement is

given in (15).

(15)
(

(⋊H → H⋉) ∧ (H⋉ → ⋊H)
)

∧
(

(⋊L → L⋉) ∧ (L⋉ → ⋊L)
)

• We can thus imagine CNLs—and the patterns they describe—at the bottom of an

axis of logical expressiveness, as Figure 2 begins to depict. However, it must be

emphasized that we are still talking about substring literals, and that expressivity

also changes when we vary the structure. Figure 2 will be filled out in more

detail momentarily, but first, let us take what we’ve learned about CNLs and

expressiveness and apply it to phonology.
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Logic

Structure

CNLs

Prop.

FO

MSO

subst.

•KJ

•X

•Ar,HJ

•Y

Figure 2: Logics and representations (I)

3.3 CNLs and phonology

• Comparing CNLs to propositional logic teaches us that negative constraints—in

the sense of forbidding substructures—are less expressive than positive ones (for

more discussion see Jardine and Heinz, to appear). As a theory of phonological

well-formedness, CNLs thus provide a restrictive theory of constraints that also

comes with models of cognition and learning.

• The Kagoshima Japanese pattern was one example of a well-formedness gener-

alization that can be captured with CNLs. Many ‘local’ phonological patterns

can be captured with these kind of constraints (Heinz, 2007, 2009; Rogers et al.,

2013).

(16) What are some other well-formedness generalizations or constraints that

can be described with CNLs (you can vary the alphabet)?

• However, CNLs cannot capture ‘long-distance’ patterns like those of Arigibi or

Hirosaki Japanese.

(17) What is the intuition behind why these generalizations can’t be captured by

CNLs? How is it different than why Language X and Language Y can’t be

captured by CNLs?
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• We want to capture Arigibi and Hirosaki Japanese without letting in patterns like

Language X (or Language Y). Thus, the best way to do this is not increase the

power of the logic but enrich the structure (Jardine and Heinz, to appear).

4 Varying structure tier string H H
↑ ↑

string H L L H

Fig. 3: A tier for H
TBUs

4.1 Substructures over tiers

• One way of doing this is to use the linguistic insight of relativized locality (Nevins,

2010), or the idea that humans pay attention to the relative order of units sharing

certain characteristics, ignoring units which do not.

• To formalize this, we can define a tier T as a subset of the alphabet Σ. To tier

formalize the idea of considering information ‘relative’ to the tier we can define

a function eraseT which takes a string and removes all symbols not on T .

Definition 7 (eraseT ) (Heinz et al., 2011) Given Σ and T , for a string w in Σ∗, eraseT

eraseT (w)
def
=







λ if w = λ

eraseT (u) · t if w = u · t (u is in Σ∗ and t is in T )
eraseT (u) if w = u · v (v contains no members of T )

• Essentially, eraseT (w) represents w with all of the non-tier information ignored.

For example, if T = {H}, then eraseT (HLLH) = HH.

• We can then define tier substrings as substrings relative to this tier.

Definition 8 (tier-substring) Given an alphabet Σ and a tier T , a a string u in tier substring

⋊T ∗
⋉ is a tier substring of a stringw inΣ∗ iff u is a substring of⋊·eraseT (w)·⋉.

• Essentially, u is a tier-substring of w if it is a substring of w when everything

in w not in T is ignored. For example, if Σ = {H,L} and T = {H}, then ⋊H

is a tier-substring of LLHL because eraseT (LLHL) =⋊H⋉, of which ⋊H is a

substring. Importantly, note that if T = Σ, then tier substrings are just substrings
(thus, tier substrings are a generalization of substrings).

(18) Let T = {H}. What are the tier substrings of LHLHLH?
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• A theory of tonal well-formedness based on tier substrings of strings over {H, L}
when the tier is {H} claims that humans pay attention to the sequences of H

TBUs, ignoring the intervening material.

Definition 9 (tier-substring literal) For a tier T , a statement φ is a tier-substring tier substring literal

literal if it is a substring of some string in ⋊T ∗
⋉.

(19) Some substring literals assuming again the alphabet is {L,H} are...

• We can then use the definition of satisfaction of literals and CNLs as we did

before, but use tier substrings (instead of substrings) as the relevant substructure.

(20) How can we describe the Arigibi pattern with CNLs over the tier

T = {H}?

(21) How can we describe the Hirosaki Japanese pattern?

4.2 Tier CNLs, computation, and phonology

• CNLs where the literals are tier substrings describe the Tier-based Strictly Lo-

cal languages (TSL; Heinz et al., 2011; Jardine and Heinz, accepted). Like the

Strictly Local languages, the Tier-based Strictly Local languages have a clear

cognitive interpretation (scanning over a tier), and they are also learnable, even if

the tier is not known to the learner in advance (Jardine and Heinz, accepted).

• With tier substrings, we get a much neater picture of phonological well-formedness

conditions: attested patterns are describable by CNLs, while the unattested pat-

terns still require more complex logics. Figure 4 fills out this chart. Note that

Arigibi (Ar) and Hirosaki Japanese (HJ) require the very powerful First Order

(FO) logic when considering strict locality, but they can be described with CNLs

when we allow for tier locality.

• In this way, a simple logic with an enriched representation gives the best fit to

phonology. In fact, at least for segmental phonology, we get a very good fit to the

typology (Heinz et al., 2011; McMullin and Hansson, to appear).
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Logic

Structure

CNLs

Prop.

FO

MSO

subst. tier-subst.

•KJ

•X

•Ar,HJ

•Y

• KJ,Ar,HJ

•X

•Y

Figure 4: Logics and representations (II)

4.3 Varying the structure further

• Tone, however, is more complex than segmental phonology (Jardine, to appear).

An example is the full Hirosaki Japanese pattern, given below in (3).

(22) Hirosaki Japanese (Haraguchi, 1977, pp. 76–7)

Noun Isolation +NOM

a. ‘handle’ é e-gá

H LH

b. ‘picture’ ê é-ga

F HL

c. ‘candy’ amé ame-gá

LH LLH

d. ‘rain’ amê amé-ga

LF LHL

e. ‘autumn’ áki áki-ga

HL HLL

Noun Isolation

f. ‘chicken’ niwatorı́

LLLH

g. ‘lightening’ kaminarı̂

LLLF

h. ‘fruit’ kudamóno

LLHL

i. ‘trunk’ toránku

LHLL

j. ‘bat’ kóomori

HLLL

(23) What is the generalization in (22)? Is this describable with CNLs where

the literals are tier-substrings? Why or why not?



Jardine Logical characterizations of phonology 11

• A major goal of my disseration (and the point of my talk tomorrow) is to define

another function like eraseT that lets us look at the autosegmental structure of

tones, and to study how expressivity of CNLs changes when we consider the

literals to be substructures of autosegmental representations. Spoiler: CNLs over

autosegmental structures can also capture patterns like Hirosaki Japanese, and in

general give a very good fit to tonal typology.

5 To review

• Logics and representations define a space of constraint definition languages (de Lacy,

2011) that are well-defined and whose relative expressivity can be studied.

• CNLs represent a type of constraint that is local in a well-defined way. Increasing

the logical power very quickly increases our expressive power (c.f. propositional

logic).

• The nature of phonological well-formedness is thus predominantly local—CNLs,

whether over strings or tiers, do a very good job of describing the attested varia-

tion. When we run into patterns that we cannot describe, it is a more restrictive

choice to vary the representation rather than the logical power.

Future work

• While our understanding of varying the logic is well-understood (Büchi, 1960;

Rogers et al., 2013; Thomas, 1982), much more could be understood about vary-

ing the representation.

• We have left out maps – what is the nature of FAITHFULNESS constraints?

– Automata-theoretic characterizations of SL maps exist (Chandlee, 2014;

Chandlee et al., 2014)

– Engelfriet and Hoogeboom (2001) and Courcelle et al. (2012) give a model-

independent way of specifying maps using MSO. What does the chart in

Fig. 4 look like using their maps? How do we define CNL maps?

– Another approach is to encode faithfulness directly in the model (Jardine,

2016; Potts and Pullum, 2002)

• Previous work has shown how CNLs are learnable (Garcı́a et al., 1990; Heinz,

2010a, 2011; Jardine and Heinz, accepted). What is the model-general CNL

learning algorithm (Jardine and Heinz, LSA)?

• How can weighted logics be applied to gradient phonological generalizations?



Jardine Logical characterizations of phonology 12

References
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Appendix

1 Models

• A model is an explicit representation of the information in a structure. Strings model

over Σ = {H,L} can be described with models of the signature signature - general
shape of a set of models

(24) S⊳ = 〈D, ⊳, PH, PL〉 S⊳

where D is a set of positions, ⊳ is a binary successor relation, and PH and PL are successor (⊳) - total
order relating each
object with the
immediately following
object

unary relations (=sets) showing which positions are occupied by a H symbol and

which are occupied by a L symbol, respectively. Let’s assume for now that PH

and PL are disjoint but that every member of D is in either PH or PL.

For example, the following is a model of string LLHL:

L L H L
1 2 3 4

Fig. 5: The information
in string HLHL

(25)
〈

{1, 2, 3, 4}D, {(1, 2), (2, 3), (3, 4)}⊳, {3}PH
, {1, 2, 4}PL

〉

• Any string in Σ∗ can be modeled by some model with the signature S⊳ in (24),

and every model of the signature S⊳ in (24) describes some string over Σ∗.

• As a theory of representation, (24) claims that, for at least tone patterns, humans

pay attention to whether each TBU is H or L, and the immediate successor rela-

tion between each TBU in a word.

• We’re also going to want to refer to word edges. Let’s revise S⊳ to include the

boundary symbols ⋊ and ⋉. So HLHL is now ⋊HLHL⋉, whose model is given

below in (27.)

(26) S⊳ = 〈D, ⊳, PH, PL, P⋊, P⋉〉

(27)
〈

{0, 1, 2, 3, 4, 5}D, {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5)}⊳,

{1, 3}PH
, {2, 4}PL

, {0}P⋊
, {5}P⋉

〉
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2 Substructures

• For a structure s, another structure r is a substructure of s if there is a mapping substructure

from the domain of r to the domain of s such that all of the relations in the

signature are maintained. For example, the string LH is a substructure of LLHL

because the positions in LH can be mapped by f as defined below to positions 3
and 4 in ⋊LLHL⋉, which have the same properties.

(28) LH =
〈

{0, 1}D, {(0, 1)}⊳, L H
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Fig. 6: Mapping LH to
LLHL

{1}PH
, {0}PL

, {}P⋊
, {}P⋉

〉

(29) f(0) = 2, f(1) = 3

A substring is a substructure of a string when modeled with the signature S⊳ . substring

3 Tiers

• In model theory, we can define tier-substring literals through a second tier suc-

cessor ordering relation ⊳T that keeps track of the precedence only between mem- tier successor (⊳T )

bers of the tier. Let us call the new signature with this relation S⊳T .

(30) S⊳T = 〈D, ⊳, ⊳T , PH, PL, P⋊, P⋉〉 S⊳T

• For example, if T = {H}, then in the string ⋊HLLHL⋉, the first H precedes the

second H with respect to ⊳T .

(31)
〈

{0, 1, 2, 3, 4, 5, 6}D, {...}⊳, {(0, 1), (1, 4), (4, 6)}⊳T ,
{1, 4}PH

, {2, 3, 5}PL
, {0}P⋊

, {6}P⋉

〉

⋊ H L L H L ⋉

⊳T ⊳T ⊳T

0 1 2 3 4 5 6

Figure 7: ⋊HLLHL⋉ as a model in S⊳T

⋊ H

⊳T

0 1

H H

⊳T

0 1

Fig. 8: ⋊H and HH as
substructures for S⊳T

• Tier substrings then include only the ⊳T , and not ⊳. Under this notion, when

T = {H}, ⋊H and HH count as substructures, but LH does not. The models for

⋊H and HH are depicted in Fig. 8.


