Tone: Computation, Representation, and Learning

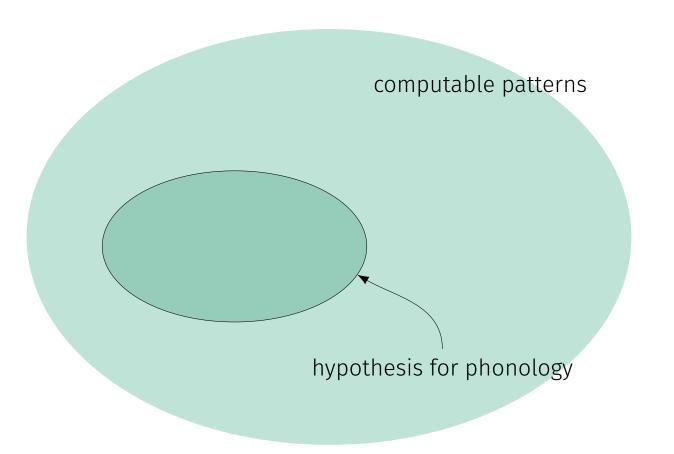
Adam Jardine

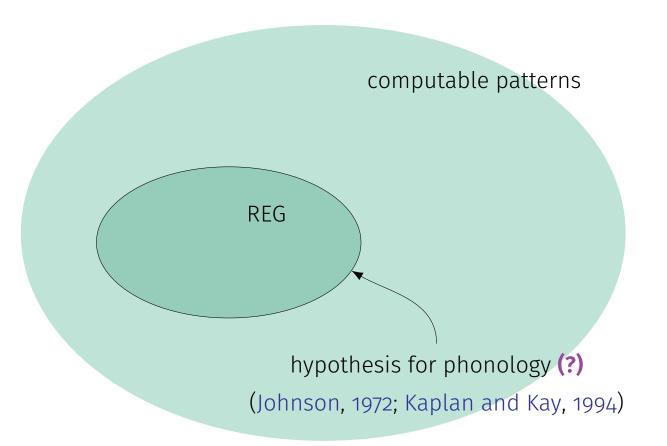
2021 Princeton Φ onology Forum

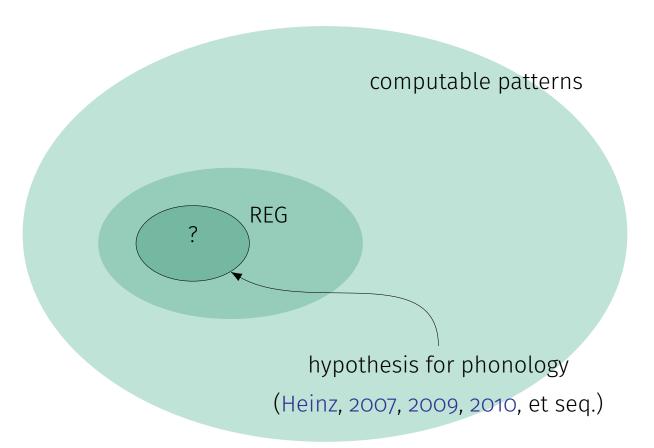
- The computational perspective on phonology teaches us much about the nature of tone
- Phonological tone teaches us much about the computational nature of phonology

Hyman (2011):

"[T]one can do everything that segmental and metrical phonology can do, but the reverse is not true. This is especially true of the long-distance effects that tone exhibits...


[A]nyone who is interested in the outer limits of what is possible in phonology would thus be well-served to understand how tone systems work."


• Theoretical computational phonology:


What computational principles define the outer limits of what is possible in phonology?

Heinz (2018):

There are computational laws that make "strong predictions ... about which logically possible phonological generalizations are not humanly possible ones."

- **Computationally,** tone appears different (Jardine, 2016, 2017, 2020)
- In this talk:
 - melody locality as a hypothesis for how tonal phonotactics are computed
 - this hypothesis comes with its own **learning model**
 - computational evidence that tone is represented differently

- What are possible...
 - well-formedness constraints (**phonotactics**)?

(Chomsky and Halle, 1965; Kisseberth, 1970; Prince and Smolensky, 1993)

 maps from underlying representations to surface representations (**processes**)?

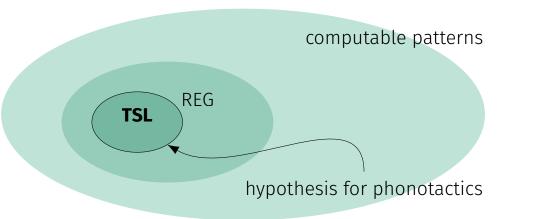
(Chomsky and Halle, 1968; Prince and Smolensky, 1993)

- What are possible...
 - well-formedness constraints (**phonotactics**)?

(Chomsky and Halle, 1965; Kisseberth, 1970; Prince and Smolensky, 1993)

 maps from underlying representations to surface representations (**processes**)?

(Chomsky and Halle, 1968; Prince and Smolensky, 1993)


Computationally local: computable by scanning string with a fixed window (McNaughton and Papert, 1971; Rogers and Pullum, 2011)

*CCC (Kisseberth, 1970)

 Computationally local: learnable by scanning example strings with a fixed window (García et al., 1990; Heinz, 2010)

$$\begin{array}{c} \# \ C \ V \ C \ C \ V \ H \\ \# \ C \ C \ V \ C \ V \\ \# \ C \ V \ C \ H \\ \cdots \end{array} \right\} \rightarrow \begin{array}{c} \# \ C \ V \ C \ C \ V \\ \# \ C \ V \ C \ C \ V \\ \hline C \ C \ C \ V \end{array} , \begin{array}{c} \cdots \ \checkmark \end{array}$$

• Hypothesis: phonotactics are (tier-based) strictly local

(Heinz et al., 2011; McMullin and Hansson, 2019)

• This is the standard for learning phonotactics (Hayes and Wilson, 2008; Jardine and Heinz, 2016; Jardine and McMullin, 2017; Gallagher and Wilson, 2018; McMullin and Hansson, 2019; Gouskova and Gallagher, 2020)

- Tone has unique **combinations of local and long-distance** phonotactics
- $\cdot\,$ Tier projection doesn't work for tone
- Tone requires a distinct melody projection

Well-formedness in tone: Two examples

- Prinmi (Tibeto-Burman; Ding, 2006; Hyman, 2009):¹
 - Exactly one H span per word
 - H span only one or two moras

b <mark>í</mark> brobroge	'as for roasted flour with honey'	HLLL	*LLLL
bíłípstsi	'sunflower'	HHLL	*HLLH
dzjodzim <u></u> źłe	'buffalo tail'	LLHL	*LHHH
ıət∫ <mark>i∫ó</mark> gé	'as for clean liquor'	LLHH	

¹For clarity, not all diacritics transcribed

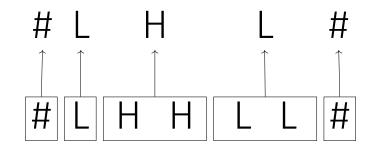
- (Northern) Bemba (Bantu; Bickmore and Kula, 2013)
 - Last H extends to end of word
 tu-ka-pat-a 'we will hate' LLLL *LHHLL
 tu-léé-pát-á 'we are hating' LHHHH
 bá-ká-fík-á 'they will arrive' HHHH
 - All other Hs spread exactly two moras (obeying OCP)

b <mark>élée</mark> ng-á	'read!'	HHLH	*HHHLH
tú-lúb-ul-ul-é	'we should explain '	HHLLH	*HLLLH
b <mark>á-a-pít-ílé</mark>	'they passed'	НГННН	
tw <mark>áá-ku-láá-pá</mark>	'we will be drawing (water)'	HHLHHH	

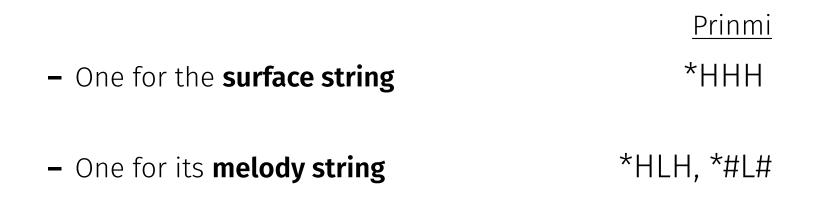
- \cdot These patterns are $\ensuremath{\text{not}}\xspace{\ensuremath{\text{local}}\xspace}$
 - Prinmi:
 LHLL *LHLH LHLLL *LHLLH LHLLLL *LHLLH :
 Bemba:
 LHHLH *LHHLL LHHLLH *LHHLLL LHHLLLH *LHHLLLL :

- These patterns have local aspects
 - Prinmi: LHLL, LHHL, *LHHH
 - Bemba: LHHLH, *LHLLH, *LHHHLH
- And we need to distinguish between the two
 - Prinmi: LHHL, *HLLH
- This kind of interaction is common in tone (Jardine, 2019, 2020)

- With the right representation, these patterns can be computed & learned locally
- We use a combination of **melody and local** constraints
- This approximates the information in autosegmental representations (Leben, 1973; Williams, 1976; Goldsmith, 1976)


 For long-distance aspects, project a melody string from the surface string

L H H L L


 For long-distance aspects, project a melody string from the surface string

#LHH	LL	#
------	----	---

 For long-distance aspects, project a melody string from the surface string

• Well-formedness evaluated with **two strictly local grammars**:

- Prinmi:
 - Grammar for **surface string:** *HHH
 - Grammar **melody string:** *HLH, *#L#

	string	melody	well-formed?
a.	#LHHLL#	#LHL#	\checkmark

- Prinmi:
 - Grammar for **surface string:** *HHH
 - Grammar melody string: *HLH, *#L#

	string	melody	well-formed?
a.	#LHHLL#	#LHL#	\checkmark
b.	#LHHHL#	#LHL#	×

- Prinmi:
 - Grammar for **surface string:** *HHH
 - Grammar melody string: *HLH, *#L#

	string	melody	well-formed?
a.	#LHHLL#	#LHL#	\checkmark
b.	#LHHHL#	#LHL#	×
С.	#LHHLLH#	#LHLH#	×

- Prinmi:
 - Grammar for **surface string:** *HHH
 - Grammar melody string: *HLH, *#L#

	string	melody	well-formed?
a.	#LHHLL#	#LHL#	\checkmark
b.	#LHHHL#	#LHL#	×
С.	#LHHLLH#	#LHLH#	×
d.	#LLL#	#L#	×

- The Prinmi pattern is **all and only** the strings that obey
 - *HHH in the surface string
 - *HLH, *#L# in its melody string

HLLL *LLLL HHLL *HLLH LHLL *LHHH LHHL *LHHLH : :

Prinmi tone is melody local

- \cdot The Bemba pattern is that for which ...
 - Last H extends to end of word
 LLLL *LHHLL
 LHHHH
 HHHH
 - All other Hs spread exactly two moras (obeying OCP)
 HHLH *HHHLH
 HHLLH *HLLLH
 HLHHH
 HHLHHH
- Bemba is also melody local

- Bemba
 - Grammar for surface string: *#HLL, *LHLL, *HHHL
 - Grammar **melody string:** *HL#

	string	melody	well-formed?
a.	#HHLLH#	#HLH#	\checkmark
b.	#LHHHH#	#LH#	\checkmark

- Bemba
 - Grammar for **surface string:** *#HLL, *LHLL, *HHHL
 - Grammar **melody string:** *HL#

	string	melody	well-formed?
a.	#HHLLH#	#HLH#	\checkmark
b.	#LHHHH#	#LH#	\checkmark
С.	#LHLLH#	#LHLH#	×
d.	#HLLHH#	#HLH#	×

- Bemba
 - Grammar for surface string: *#HLL, *LHLL, *HHHL
 - Grammar **melody string:** *HL#

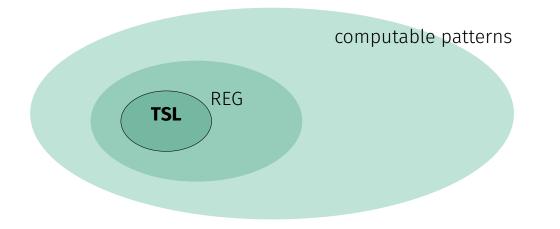
	string	melody	well-formed?
a.	#HHLLH#	#HLH#	\checkmark
b.	#LHHHH#	#LH#	\checkmark
С.	#LHLLH#	#LHLH#	×
d.	#HLLHH#	#HLH#	×
e.	#HHLLL#	#HL#	×

- Melody local grammars capture Prinmi and Bemba
- Two kinds of constraints working in tandem:
 - Local constraints restricting melody
 - Local constraints restricting how tones are realized on surface string

Melody locality

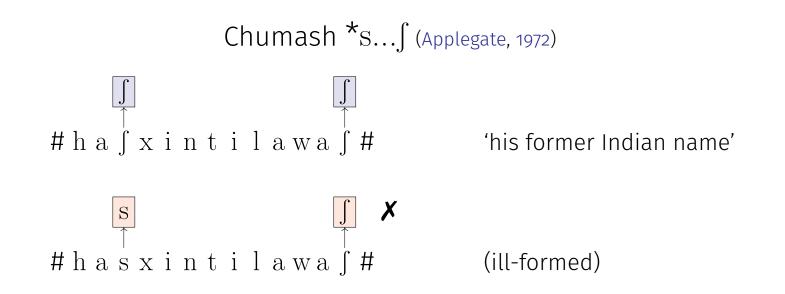
- Hypothesis: tonal phonotactics are melody local
- Jardine (2020) shows a number of tone patterns² are melody local

²With a close exception in Karanga Shona (Odden, 1981; Hewitt and Prince, 1989).

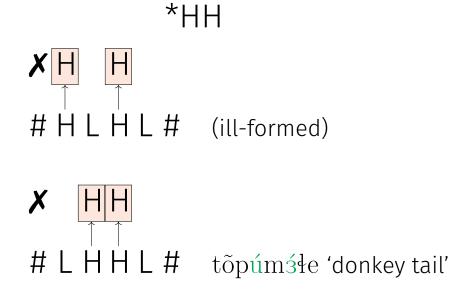

Melody locality

• Learning model: local learning on both example strings and their melodies

#LHHLL#, #HLLL#, #LLH#, ... } \rightarrow # L H , L H H , ... \checkmark \downarrow \downarrow \downarrow H H H \checkmark #LHL#, #HL#, #LH#, ... } \rightarrow # L H , L H L , ... \checkmark H L H , # L # \checkmark

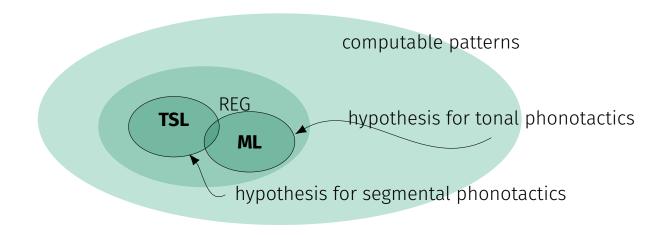

Discussion

 Tier-based strictly local models are the current standard for learning phonotactics (Hayes and Wilson, 2008; Jardine and Heinz, 2016; Jardine and McMullin, 2017; Gallagher and Wilson, 2018; McMullin and Hansson, 2019; Gouskova and Gallagher, 2020)



• Idea: **project** relevant segments on a **tier**

(Hayes and Wilson, 2008; Heinz et al., 2011; McMullin and Hansson, 2019)



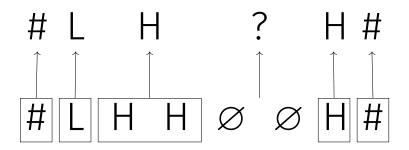
- Prinmi is not TSL
- \cdot Tier projections conflate adjacent and non-adjacent H TBUs

- Bemba is not TSL for a similar reason
- Other non-TSL patterns: Unbounded tone plateauing (Kisseberth and Odden, 2003; Hyman, 2011), several accent patterns in Japanese dialects (Haraguchi, 1977), Karanga Shona (Hewitt and Prince, 1989)
- \cdot TSL models cannot learn tone \mathbf{no} matter what

• Hypothesis: tone uses **melody local** computation; segmental phonology uses TSL computation

 \cdot Both are local; the difference is representation

Discussion: Remaining issues


- Computing tone **processes**:
 - Mamadou (in progress) proposes melody local **functions** that work in the same way

 - (See also Rawski and Dolatian 2020 and Chandlee and Jardine (forthcoming))

Discussion: Remaining issues

 Incorporating other aspects of representation, such as underspecification

(for, e.g., Luganda (Hyman and Katamba, 2010), Saramaccan (Good, 2004))

Conclusion

- Melody locality is a **necessary** condition for learning tonal phonotactics
- This is both distinct from, and similar to, learning segmental phonology
- It is **not sufficient**, and much remains to be done!

Thank you!

Thanks to Nik & Florian for inviting me, and to Deen Mamadou, Chris Oakden, Jon Rawski, Hossep Dolatian, Arto Anttila, some anonymous reviewers at *NLLT*, Jeff Heinz, Bill Idsardi, Jane Chandlee, and probably others I have forgotten to mention (sorry!) for their advice and comments on this work.

Appendix

Karanga non-assertive verb stems (Odden, 1994)

• • •

H-toned	L-toned
Н	
HL	LH
HLH	LHL
HHLH	LHHL
HHHLH	LHHLL
HHHLLH	LHHLLL
HHHLLLH	LHHLLLL

• • •

Surface : *#LL, *#HLL, *#HHLL, *HHHH, *LHLL, *LHHH, *HH# Melody **(almost)**: *#HL#, *HLHL, *LHLH