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Basic questions

How do children

• acquire language...

• without explicit instruction...

• in such a uniform way...

• despite the variety of experience?
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“[V]arious formal and substantive universals are
intrinsic properties of the language-acquisition system,
these providing a schema that is applied to data and
that determines in a highly restricted way the general
form and, in part, even the substantive features of the
grammar that may emerge upon presentation of
appropriate data.”

(Chomsky, 1965)
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“It made sense for researchers to explore the
possibility of a universal grammar at the time it was
proposed (Chomksy 1965), when an understanding of
the power of statistical learning and induction were a
long way o�.”

Goldberg (2009, p. 203)
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Theoretical learning results refute Goldberg’s claim:

• Gold (1967): No restrictions on data presentation =⇒ no
general learning algorithm from positive data

• Angluin (1988): “[T]he assumption of stochastically generated
examples does not enlarge the class of learnable sets of
languages.” (p. 2)

• Wolpert and Macready (1997): “[I]f an algorithm performs well
on a certain class of problems then it necessarily pays for
that with degraded performance on the set of all remaining
problems.” (p. 67)
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• A successful (language) learner must assume a restriction...

– ... on the possibilities it is willing to consider; or

– ... on how the data is being presented to it
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• Computational learning theory is a framework for...

– clearly stating learning problems

– ...and solutions!

– developing restrictive, testable hypotheses about
language learning
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This talk:

• Basic results in comp. learning theory, starting from Gold
(1967)

• Criticisms, extensions, alternatives

• Implications for theoretical linguistics, language acquisition

• Illustrations with applications/results in phonology
(but transferable to syntax!)

• Further reading
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• Collaborators/Mentors:

Je� Heinz Jim Rogers Rémi Eyraud Jane Chandlee Kevin McMullin
(Stony Brook) (Earlham) (Jean Monnet) (Haverford) (Ottowa)

...at Rutgers:

Tatevik Yolyan Dine Mamadou Wenyue Hua Huteng Dai

8



What is learning?



What is (language) learning?

grammar

language

finite
sample

learner grammar′

language′
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Languages and grammars



What is a pattern?

• Well-formedness patterns are sets
ex. *CC

well-formed: {V, CV, CVV, CVC, CVCV, CVCVC, ..., VVVVCVVV, ...}
well-formed: {CC, CVCC, CCVC, ..., CVCVCCVCV, ..., CCCCCC, ...}

ex. SVO word order (with C for complementizer)

well-formed: {SV, SVO, SVCSVO, SCSVVO, ...}
ill-formed: {VS, SOV,OSV, SVCSOV, ...}
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Formal languages

• Sets of strings are formal languages

• An alphabet Σ is a finite set of symbols

{0, 1}

{a, b, c}
{a, b, c, ..., æ, B, O, ..., z}
{N, V, Adj, ..., C}
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Formal languages

• A string w over Σ is some sequence σ1σ2...σn of symbols in Σ.

• Σ∗ is all strings over Σ

Σ = {a, b, c}

Σ∗ = { λ, a, b, c, aa, ab, ac,
ba, bb, bc, ca, cb, cc,
aaa, aab, aac, ...,
abbaaacccbabacb, ... }
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Formal languages

• A (formal) language some subset L ⊆ Σ∗

• Some formal languages for Σ = {a, b, c}:

– {b}
– (ab)n = {λ, ab, abab, ababab, ...}
– anbn = {λ, ab, aabb, aaabbb, aaaabbbb, ...}
– ...

13



Formal language classes and grammars
all possible languages
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Formal language classes and grammars
all possible languages

computable languages
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Formal language classes and grammars

• Finite languages (Fin)

– {b}
– {ab, bab, aaa}
– {a, aa, aaa, ..., aaaaaaaaaaaaaaaaaaaaaa}
– ...

• A grammar is a finite description of a language

• A grammar for L ∈ Fin is just L itself!
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Formal language classes and grammars
all possible languages

Fin

computable languages
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Formal language classes and grammars

• How would you compute the *CC language?1

{V, CV, CVV, CVC, CVCV, CVCVC, ..., VVVVCVVV, ...}

1Σ = {C, V}
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Formal language classes and grammars

• How would you compute the *CC language?2

{V, CV, CVV, CVC, CVCV, CVCVC, ..., VVVVCVVV, ...}

• Make sure the string doesn’t contain CC sequences!

{CC, CVCC, CCVC, ..., CVCVCCVCV, ..., CCCCCC, ...}

• G for this language:
{CC}

2Σ = {C, V}
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Formal language classes and grammars

• A language is strictly local i� it is described by a forbidden
substring grammar (McNaughton and Papert, 1971; Rogers
and Pullum, 2011)

• A good many phonotactics are SL (Heinz, 2010)
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Formal language classes and grammars

Fin SL

computable languages
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Learning, formally
defined



Identification in the limit from positive data (IILPD)

• Gold (1967)

– on any infinite presentation of positive examples of
target,

– learner converges exactly to target after some finite
number of examples

• Being (or not) IILPD-learnable is a property of classes, not
languages
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Identification in the limit from positive data (IILPD)

A presentation of L? is a sequence p of examples drawn from L?

L?
t p(t)

0 abab

1 ababab

2 ab

3 λ

4 ab
... ...

In the limit, every string in L∗ appears in p
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Identification in the limit from positive data (IILPD)

A learner A takes a finite sequence and outputs a grammar

t p(t)

0 abab

1 ababab

2 ab

3 λ

4 ab
... ...
n ababab
... ...

p[i] A Gi
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Identification in the limit from positive data (IILPD)

Let’s take the learner AFin:

AFin(p[n]) = {w | w = p(i) for some i ≤ n}
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Identification in the limit from positive data (IILPD)

Let’s take the learner AFin:

AFin(p[n]) = {w | w = p(i) for some i ≤ n}

Let’s set L? = {ab, bab, aaa}

t p(t) Gt

0 bab {bab}
1 ab {ab, bab}
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Identification in the limit from positive data (IILPD)

Let’s take the learner AFin:

AFin(p[n]) = {w | w = p(i) for some i ≤ n}

Let’s set L? = {ab, bab, aaa}

t p(t) Gt

0 bab {bab}
1 ab {ab, bab}
2 bab {ab, bab}
3 aaa {ab, bab, aaa}
4 ab {ab, bab, aaa}

...
308 bab {ab, bab, aaa}

22



Identification in the limit from positive data (IILPD)

A converges at point n if Gm = Gn for any m > n

t p(t) Gt

0 bab G0

1 ab G1

2 ab G2

... ... ...
n aaa Gn

n+ 1 bab Gn

... ... ...
m ab Gn

... ... ...

convergence
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Identification in the limit from positive data (IILPD)

AFin converges on this p at t = 3

t p(t) Gt

0 bab {bab}
1 ab {ab, bab}
2 bab {ab, bab}
3 aaa {ab, bab, aaa}
4 ab {ab, bab, aaa}

...
308 bab {ab, bab, aaa}

Note also that Gt = L∗ = {ab, bab, aaa}
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Identification in the limit from positive data (IILPD)

AFin converges on any p at some finite t

t p′(t) Gt

0 bab {bab}
1 ab {ab, bab}
2 ab {ab, bab}
3 ab {ab, bab}
4 ab {ab, bab}

... {ab, bab}
1040 aaa {ab, bab, aaa}

... {ab, bab, aaa}

t p′′(t) Gt

0 aaa {aaa}
1 aaa {aaa}
2 aaa {aaa}
3 ... {aaa}

45 bab {aaa, bab}
... {aaa, bab}

23168 ab {ab, bab, aaa}
... {ab, bab, aaa}

. . .

Because any p contains all and only strings in L∗, Gt = L∗ at some t
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Identification in the limit from positive data (IILPD)

Fin SL

computable languages

• AFin only ever returns a language in Fin
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Identification in the limit from positive data (IILPD)

IILPD-learnability
A class C is IILPD-learnable if there is some algorithm AC such
that for any language L ∈ C, given any positive presentation p
of L, AC converges to a grammar G such that L(G) = L.
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Identification in the limit from positive data (IILPD)

IILPD-learnability
A class C is IILPD-learnable if there is some algorithm AC such
that for any language L ∈ C, given any positive presentation p
of L, AC converges to a grammar G such that L(G) = L.

Strengths

• Works on any presentation of L

• Works with positive data only

• Identifies target exactly
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Identification in the limit from positive data (IILPD)

Fin SL

computable languages

• Fixed size k of substrings =⇒ SLk is IILPD-learnable
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Identification in the limit from positive data (IILPD)
IILPD of SLk languages

G? = {CC}

t datum hypothesis (k = 2)

0 V C

1 CV CV C

2 CV V CV CV

3 V CV CV

...
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t datum hypothesis (k = 2)

{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV
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Identification in the limit from positive data (IILPD)
IILPD of SLk languages

G? = {CC}

t datum hypothesis (k = 2)
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2 CV V CV CV
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Identification in the limit from positive data (IILPD)
IILPD of SLk languages

G? = {CC}

t datum hypothesis (k = 2)

{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV {CC,CV , V C, V V }

2 CV V CV CV {CC,CV , V C, V V }
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Identification in the limit from positive data (IILPD)
IILPD of SLk languages

G? = {CC}

t datum hypothesis (k = 2)

{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV {CC,CV , V C, V V }

2 CV V CV CV {CC,CV , V C, V V }

3 V CV CV {CC,CV , V C, V V }
...
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Identification in the limit from positive data (IILPD)
IILPD of SLk languages

ASLk(p[i]) = substringsk(Σ
∗)− substringsk{p(0), p(1), ..., p(i)}

• Guaranteed to converge as soon as we see substringsk(L?)

• The time it takes to calculate is directly proportional to the
size of the data sample.
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Identification in the limit from positive data (IILPD)

Gold (1967): Any class C containing all of Fin and at least one
infinite language is not IILPD-learnable

• Reason: there are presentations p for which any p[t] is
consistent with some finite Lfin ∈ C and the infinite Linf ∈ C

• Most language classes are not IILPD-learnable!

– SL when k is not fixed

– Regular, Context-Free, etc.
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Identification in the limit from positive data (IILPD)

Gold (1967): Any class C containing all of Fin and at least one
infinite language is not IILPD-learnable

• Learners must be restricted to some (non-superfinite) class
to be successful IILPD (Angluin, 1982)

• This fact can be interpreted to give mathematical weight the
poverty of the stimulus argument for UG
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Identification in the limit from positive data (IILPD)
• Much (all?) of phonology lies in IILPD-learnable classes (Heinz, 2018)

computable languages

SL TSL

phonotactics

– TSL = tier-based strictly local (Heinz et al., 2011; Jardine and Heinz, 2016; McMullin
and Hansson, 2016)
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Other paradigms



Other paradigms

• Criticisms of IILPD as a model of human learning:

– requires success on “adversarial” presentations

– no “stochastic learning”

– no considerations of feasibility

– exact convergence is too hard

– absence of noise is too easy
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Other paradigms

IILPD from computable presentations
Gold (1967): The entire class of computable languages is learn-
able in the limit from positive, computable presentations.

• However, the learner is not feasible

• It is an enumerative learner that “guesses” the machine
generating the presentation

• Is experience computable?
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Other paradigms

IILPD with probability p
Angluin (1988): If we require learner to identify target with
p > 2/3, then IILPD with probability p is same as IILPD

• In this paradigm, learners can behave randomly (e.g. flip
coins)

• However, Angluin finds that “if the probability of
identification is required to be above some threshold,
randomization is no advantage” (p. 5)
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Other paradigms

IIL from positive stochastic distributions

Angluin (1988): If we require learner to identify with p > 2/3, then
IIL from positive stochastic distributions is same as IILPD

• In this paradigm, presentations are drawn from some
stochastic distribution

• Learner must succeed on any distribution

• “[G]iven a presentation on which the normal nonprobabilistic learner
fails, we can construct a corresponding distribution on which the
probabilistic learner will fail.” (Clark and Lappin, 2011, p. 110)
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Other paradigms

IIL from restricted distributions
• Horning (1969): probabilistic context-free grammars can be learned

from positive data with probability 1
• Osherson et al. (1986) extend this to all computable stochastic lan-

guages, given a fixed set of distributions

• Learning target is stochastic formal languages

• Results hold only for a restricted set of fixed distributions

• Distributions are computable (like in Gold 1967!)

• Similarly, learner is not feasible
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Other paradigms

Summary

• Criticisms of IILPD as a model of human learning:

– requires success on “adversarial” presentations

– no “stochastic learning”

– no considerations of feasibility

– exact convergence is too hard

– absence of noise is too easy
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Other paradigms

Summary

• Gold (1967): no general learner for IILPD

• Naively adopting “stochastic learning” does not increase
learning power

• Restricting distributions makes a di�erence (Horning, 1969;
Osherson et al., 1986)

• So does restricting presentations! (Gold, 1967)

• For more see Heinz (2016)!
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Other paradigms

Feasibility

• de la Higuera (2010): Identification in the limit in polynomial
time and data

• This is based on sample sets, rather than presentations

42



Other paradigms

Inexact identification

• Osherson et al. (1986): IIDLP with finite number of errors

– Makes learning easier, but not enough to learn all
computable languages

• Probably Approximately Correct (PAC) learning (Valiant, 1984)

– Probabilistic framework with explicit negative examples

– Not even Fin is PAC-learnable!
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Noise



Noise

• Naturalistic linguistic experience is not perfect

• Noise encapsulates errors and exceptions
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Noise

Noisy presentation
For a language L, a presentation p is a noisy presentation of L i� it is a
positive presentation of L ∪X for some finite set X

IIL from noisy presentations (Osherson et al., 1986)
For a class C to be IIL from noisy presentations, for any L1, L2 ∈ C, both L1−L2

and L2 − L1 must be infinite.
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Noise

IIL from noisy presentations (Osherson et al., 1986)
For a class C to be IIL from noisy presentations, for any L1, L2 ∈ C, both L1−L2

and L2 − L1 must be infinite.

• Even with fixed substring size k, SL is not IIL from noisy
presentations
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Noise
• Dai (submitted)

– SL learner (k = 2) for learning with noise

– Empirical tests on English and Turkish

– Works as well as MaxEnt (Hayes and Wilson, 2008)

• Probabilistic grammars not necessary to deal with noise

• Current work: what kind of presentations does Dai Algorithm work on?

• What kind of presentations are necessary for any algorithm to work?
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Discussion



Discussion

• Computational learning theory investigates the logic of
learning

• Necessarily, it makes idealizations (like IILPD)

• However, it motivates empirical investigations:

– What classes do human language learners target?

– What assumptions do human language learner make
about the data presentation?
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Thank you!

...and also thanks to Huteng Dai, Je� Heinz, and the Rutgers
Mathematical Linguistics Group
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Reading list (in recommended reading order)

Jonathan Rawski and Je�rey Heinz. 2019. No Free Lunch in Linguistics or Machine Learning:
Response to Pater. Language , 95(1):e125–e135. (pdf)

Heinz, Je�rey. 2016. Computational Theories of Learning and Developmental Psycholinguistics.
In Je�rey Lidz, et al., editors, The Oxford Handbook of Developmental Linguistics, chapter 27,
pages 633–663. Oxford University Press. (pdf)

James Rogers and Geo�rey K. Pullum. 2011. Aural Pattern Recognition Experiments and the
Subregular Hierarchy. Journal of Logic, Language, and Information, Vol. 20, No. 3. (pdf)

Clark, Alexander, and Shalom Lappin. 2011. Linguistic Nativism and the Poverty of the Stimulus.
Wiley-Blackwell.

Partha Niyogi. 2006. The Computational Nature of Language Learning and Evolution. MIT Press.
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