

Kalabari tonotactics require Forbidden Substructure Constraints stated over substrings not autosegmental representations

Nicholas Rolle¹ and Adam Jardine²
¹Princeton University ²Rutgers University

OCP23 Satellite – ‘The Role of Representation in Computational Phonology’
January 13, 2026 – University of Cambridge

- Renewed interest in **phonological representations**
 - What are the ‘**atoms**’ of representation? E.g. features, moras, gestures, formants, ...
 - Are they universal? And are they ‘substance-free’ without direct reference to phonetics?
 - How are these elements organized internally (e.g. feature geometry), and how are they relate to other elements (i.e. **precedence** within a tier, **association** across tiers)?
 - What kinds of prosodic **constituents** do these elements form, and what governs this? E.g. syllables, feet, prosodic words, the prosodic hierarchy, ...
- Most interest in representations has focused on phonological **inputs** (crudely, the contents of the **lexicon**) and phonological **outputs** (their form after **phonological operations**)
- Today: What are the computational properties of representations in phonological **constraints**, which dictate well-formed outputs (and perhaps inputs *à la* Morpheme Structure Constraints)?
 - To use one recent example, consider the constraint in Figure 1 proposed in [Bermúdez-Otero \(2025\)](#) to account for /aɪ/ raising (i.e. “Canadian Raising”)
 - * Voiced coda: *ride* /rɪd/ → [rɪd̯]
 - * Voiceless coda: *write* /rɪt/ → [rɪt̯]
 - Constraint is a prosodic tree (the minimal word), with a strong/weak branch (s/w) distinction, and allowance for potential transparent intermediate structure (‘...’ in the tree)

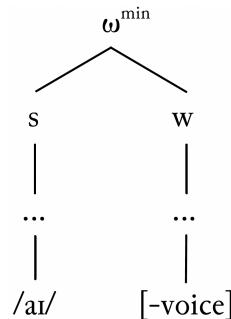


Figure 1: Constraint to capture /aɪ/ raising ([Bermúdez-Otero, 2025](#))

- *What are the constraints on constraints?*
 - What kind(s) of representations do constraints have?
 - What computational properties do such representations have compared to the phonological content they evaluate?
- We present data from **Kalabari** tone which shows a conspiracy to avoid tone sequences of low-high-high, which we call ***LHH**
- We formalize ***LHH tonotactics** as a **forbidden substructure constraint**
 - Crucially, we argue that it is best described by a **forbidden substring** grammar rather than a more elaborated forbidden substructure grammar over autosegmental representations
- Roadmap
 - Relevant Kalabari data ([§1](#))
 - The problem ([§2](#))
 - Our solution ([§3](#))
 - Summary ([§4](#))

Kalabari
***LHH**
tonotactics
forbidden substructure
constraint
forbidden substring

1 Data

- Kalabari language (ISO 639-3 [\[ijn\]](#))
 - Part of **Ijoid** family of extreme south of **Nigeria** (Niger Delta region)
 - Highly analytic, head-final language (unlike all non-Ijoid neighbors)
 - Basic clause-level word order: [S] [ADJUNCT] [O] [V] [INFL]
- Kalabari **tone system**
 - Relatively well-described ([Jenewari, 1977, 1980](#); [Harry, 2004](#); [Anonymous and Blench, 2008](#); [Harry and Hyman, 2014](#); [Rolle and Harry, 2025](#)).
 - H vs. L tone distinction (e.g. *sò* 'sky' vs. *só* 'go'), plus contrastive downstepped highs transcribed as \downarrow H (e.g. $\acute{s}\acute{l}$ 'cough' vs. $\acute{s}\downarrow\acute{l}$ 'hold')
 - Tone is fully contrastive on both nouns and verbs

Table 1: Tone contrasts on two-syllable words

LL	ikè	'hunchback'
LH	òkí	'sawfish'
HL	íkù	'cocoyam'
HH	íkú	'louse'
H \downarrow H	á \downarrow kú	'bitter'

- The ***LHH conspiracy** ([Rolle and Harry, 2025](#))
 - Systematic gap of LHH words in (native) vocabulary ([§1.1](#))
 - A LHH output conspicuously avoided in grammatical tone ([§1.2](#))
 - Downstep insertion with derived LH#H sequences across words ([§1.3](#))
 - (Exceptional lowering operations in certain noun phrases – [§1.4](#))
 - (Low-toned clitics spread their tone to avoid phrase-level LHH – [§1.5](#))

***LHH conspiracy**

1.1 Underlying *LHH gap

- Gaps in underlying tone patterns with three-syllable words (Table 2)
 - Downstep – Must be on final vowel (three native exceptions in Harry 2004: *á↓dóá* ‘defense’, *í↑róá* ‘sun’, *íŋ↓gólo* ‘limpet’)
 - *HLL – A few exceptions from loanwords/*wanderwörter* (e.g. *ókùrù* ‘okra’, *íŋkòrò* ‘tom-tom menthol candy’, *ábìlì* ‘draughts board game’)
 - **Underlying *LHH gap** (Two known exceptions – Loanwords/*wanderwörter* *ègúsi* ‘melon’ and *àkótó* ‘small container’)

Table 2: Tone contrasts on three-syllable words

LLL	àkàkà	‘edge’	HLL	*	-	-	-
LLH	íkìká	‘biscuit’	HLH	íkàrí	‘thorn’	-	-
LHL	òkíkò	‘spoon’	HHL	íkpápù	‘pen knife’	H [↓] HL	*
LHH	*		HHH	ékéké	‘pebbles’	H [↓] HH	*
LH [↓] H	òkó [↓] kó	‘skull’	HH [↓] H	ísa [↓] ká	‘eyelash’	H [↓] H [↓] H	*

- Such restrictions equally hold of larger mono-morphemic words of four or five syllables (e.g. *LLHH, *LHHL, *LHHH, *LHH[↓]H, *HLHH, etc.)

1.2 No LHH in grammatical tone

- Kalabari grammatical tone
 - In noun phrases, pre-nominal modifiers replace underlying tone of noun with a dedicated grammatical tone melody (“construction tonology” – Harry and Hyman 2014)
- Grammatical tone melodies (circled in Table 3)
 - Associative constructions (e.g. compounds, possessor nouns) assign a $\textcircled{H}\textcircled{L}$ melody
 - Possessive pronouns as a class assign a $\textcircled{H}\textcircled{L}\textcircled{H}$ melody (often realized with downstep)
 - Demonstratives and pre-nominal determiners assign a $\textcircled{L}\textcircled{H}$ melody
 - Quantifiers and most numerals assign a \textcircled{L} melody

Table 3: Grammatical tone avoids creating phrase-level LHH pattern (Harry and Hyman, 2014)

	Noun:	HH	LL	HL	LH	H [↓] H
Modifier:		námá ‘meat’	púlò ‘oil’	bélè ‘light’	gárlí ‘flour’	bá [↓] rá ‘hand’
Associative	tùbò ‘a child’s ...’	$\textcircled{H}\textcircled{L}$	tùbò námà	tùbò púlò	tùbò bélè	tùbò gárlí
Poss. pronoun	ìnà ‘their ...’	$\textcircled{H}\textcircled{L}\textcircled{H}$	ìnà ná [↓] má	ìnà pú [↓] lò	ìnà bélè	ìnà gá [↓] rá
Demonstrative	tò ‘which ...’	$\textcircled{L}\textcircled{H}$	tò námá	tò púlò	tò bélè	tò gárlí
Quantifier	jà ‘some ...’	\textcircled{L}	jà námá	jà púlò	jà bélè	jà gárlí
*	tà	\textcircled{H}	*tà námá	*tà púlò	*tà bélè	*tà gárlí

- Conspicuously absent are cases with only a \textcircled{H} melody
 - If modifier is low-toned, this would result in a derived phrase-level L#HH pattern

1.3 Downstep insertion with LH#H

- When LHH sequences are incidentally produced, repaired by the insertion of a **downstep** downstep
 - This happens in LH#H contexts, but *not* in L#HH contexts for which we assume some restriction on inserting downsteps within a word (as opposed to before it)
- Contexts include between a noun and a post-nominal modifier (1a), a verb and an inflectional marker (1b), two verbs in a serial verb construction (1c), and the subject and the predicate (1d)

(1) Downstep insertion (in red): ...LH#H... → ...LH#[↓]H... (Rolle and Harry, 2025)

- a. [gàrì [↓]mámgbà]
gàrì mámgbà
garri.flour all
'all *garri* flour'
- b. [námá sèlé [↓]té[↓]é]
námá sèlé té[↓]é
meat be.chosen PERF
'the meat has been chosen'
- c. [bìlà má dísé [↓]sábá árì]
bìlà má dísé sábá árì
elephant DEF.PL sneeze cross CONT
'the elephants are sneezing over'
- d. [òdòdó [↓]fú sélé té[↓]é]
òdòdó fú sélé té[↓]é
snake salt choose PERF
'the snake has chosen salt'

- Crucially, downstep is specifically *not* inserted in a simple H#H sequence

1.4 Exceptional lowering operations

- While downstep insertion is the most robust response to incidental phrase-level LHH sequences, there are two other construction-specific responses, both only in noun phrases
- First, the modifier òpù 'big' is one of very few pre-nominal modifiers which does *not* assign grammatical tone (Table 4; cf. Table 3)
 - The only tone change happens with all-high nouns (e.g. féní 'bird'), which may optionally be pronounced all-low – no other tone type shows such variation
- Tone-lowering in this (and only this) context avoids a L#HH sequence

Table 4: Lack of grammatical tone with òpù 'big' (Harry and Hyman, 2014)

Noun:	HH	LL	HL	LH	H [↓] H
Modifier:	féní 'bird'	finì 'fire'	sírì 'leopard'	èkpé 'he-goat'	wá [↓] rí 'house'
òpù 'big ...'	òpù féní ~ òpù féní	òpù finì	òpù sírì	òpù èkpé	òpù wá [↓] rí (Cf. *òpù wàrì)

- Second, associative constructions (Table 3) can create a LHH sequence if the modifying noun is underlying LH, and it assigns a HH melody to the following head noun
 - In this context, the modifying noun itself can optionally undergo lowering (2)

- Downstep insertion (the usual repair) is not possible (2c)

(2) a. [èkpé námà]
èkpé $\textcircled{H}\textcircled{L}$ námá
he.goat ASSOC meat
‘he-goat meat, the he-goat’s meat’

b. [èkpè námà]
(also acceptable)

c. Cf. *[èkpè ↓námà]

1.5 Clitic-triggered low tone spreading

- Low-toned pronominal clitics in subject position are special: Condition three tonal variants
 - The clitic’s low tone spreads to a contiguous string of high-toned syllables to its right (the most natural pronunciation – 3a)
 - The clitic’s low tone spreads to all high tones but one (less natural – 3b)
 - The clitic’s low tone does not spread (the least natural – 3c)

(3) Clitic-triggered low tone spread (Rolle and Harry, 2025)

a. [à fékéféké té↓é]
à fékéféké té↓é
I be.light PERF
‘I have become light (in weight)’

b. [à fékéféké ↓té↓é]
(less natural)

c. [à fékéféké té↓é]
(least natural)

- Only the prosodically-weakest clitics trigger this: low-toned, monosyllabic, onsetless
 - The exhaustive list is à ‘I’, ò ‘he’, ñ ‘they’ (not a morphological natural class)
- Low tone spread is restricted to the phonological phrase but is otherwise phonologically **unbounded**, and only stops at a low tone (or downstepped high), in (4) unbounded

(4) a. [ò ɓùrùmà sèlè té↓é]
ò ɓùrùmá sélè té↓é
he indigo choose PERF
‘he has chosen indigo’

b. [à dʒé féní fé té↓é]
à dʒé féní fé té↓é
I another bird buy PERF
‘I have bought another bird’

- Why do clitics spread here? An appeal to *LHH
 - These clitics are prosodically deficient, and one repair is to incorporate them into the following prosodic domain by spreading their low tone (lefthand side in Figure 2 – Rolle and Harry 2025)
 - This alleviates deficiency, but it creates a new problem: a newly derived LHH sequence
 - To repair this, the low tone spreads unboundedly to all (or all-but-one) contiguous high-toned syllables within the phrase (righthand side in Figure 2)

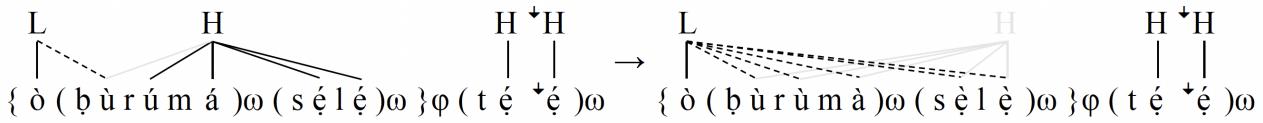


Figure 2: Incorporation of prosodically deficient clitic leads to unbounded low tone spreading

2 The problem

- LH#H sequences are repaired even when they are created by **H tone spread**
- In transitive verb phrases, an *in situ* object conditions deletion of verb tone (neutralizing any contrast), after which the final tone of the object spreads onto the verb (Tables 5 and 6)
 - Underlying LH objects are most telling (e.g. gári at the bottom of these tables)
 - Object-to-verb tone spreading creates derived LH#H sequences, and these are then repaired *via* insertion of a downstep

Table 5: Deletion of verb tone with tone spread from object (L-toned verb sèlè 'to choose')

LL	bítè 'cloth'	à bítè sèlè té [↓] é	→	à bítè sele té [↓] é	→	à bítè sèlè té [↓] é	'I have chosen cloth'
HL	sírì 'leopard'	à sírì sèlè té [↓] é	→	à sírì sele té [↓] é	→	à sírì sèlè té [↓] é	'I have chosen a leopard'
HH	ígbé 'box'	àrì ígbé sèlè té [↓] é	→	àrì ígbé sele té [↓] é	→	àrì ígbé sélè té [↓] é	'I have chosen a box'
H [↓] H	wá [↓] rí 'house'	à wá [↓] rí sèlè té [↓] é	→	à wá [↓] rí sele té [↓] é	→	à wá [↓] rí sélè té [↓] é	'I have chosen a house'
LH	gári 'flour'	ò gári sèlè té [↓] é	→	ò gári sele té [↓] é	→	ò gári sélè té [↓] é	'he has chosen flour'
					→	(→ ò gári sélè té [↓] é)	

Table 6: Deletion of verb tone with tone spread from object (H-toned verb érí 'to see')

LL	pùlò 'oil'	féní pùlò érí té [↓] é	→	féní pùlò éri té [↓] é	→	féní pùlò éri té [↓] é	'the bird has seen the oil'
HL	bélè 'light'	ò bélè érí té [↓] é	→	ò bélè éri té [↓] é	→	ò bélè éri té [↓] é	'he has seen the light'
HH	námá 'meat'	á námá érí té [↓] é	→	á námá éri té [↓] é	→	á námá éri té [↓] é	'she has seen the meat'
H [↓] H	wá [↓] rí 'house'	à wá [↓] rí érí té [↓] é	→	à wá [↓] rí éri té [↓] é	→	à wá [↓] rí éri té [↓] é	'I have seen the house'
LH	gári 'flour'	ò gári érí té [↓] é	→	ò gári éri té [↓] é	→	ò gári éri té [↓] é	'he has seen the flour'
				→	(→ ò gári éri té [↓] é)		

- *LHH tonotactics thus disallow such sequences from a number of origins (represented autosegmentally in Table 7)
 - When the high tone sequence belongs to the same word
(Presumably a single H toneme, but perhaps two tonemes – Table 7a-b)
 - When the high tone sequence is derived with incidentally-adjacent words
(Presumably multiple H tonemes – Table 7c)
 - When the high tone sequence is derived from grammatical tone
(Again, presumably multiple H tonemes – Table 7d)
 - When the high tone sequence is derived through spreading in verb phrases
(Presumably a single H toneme – Table 7e)

Table 7: Total inventory of banned *LHH structures

a.	*	#	L	H	#	b.	*	#	L	H	H	#				
				/	\											
		#	à	ú	ú	#		#	à	ú	ú	#				
c.	*	L	H	#	H	d.	*	L	H	#	ø	e.	*	L	H	#
															\	
		à	ú	#	ú			à	ú	#	ú		à	ú	#	ú

- If we want to capture the range of *LHH prohibitions, how do we formalize this constraint?
- Much work in computational phonology has shown the utility of **Forbidden Substructure Constraints** (FSCs) (Rogers et al., 2013; Jardine, 2016, 2017a, *inter alia*)
 - Potential FSCs are in Table 8, where we use the negative symbol ‘¬’ to denote a forbidden substructure
 - The arrows denote **precedence** relations, and the solid lines **association** lines between structure on separate **tiers**

Forbidden
Substructure
Constraints

precedence
association
tiers

Table 8: Potential Forbidden Substructure Constraints to capture *LHH

a.	¬	L	→	H	→	H	b.	¬	L	→	H	→	H	c.	¬	L	→	H		
																		\		
									à	→	ú	→	ú			à	→	ú	→	ú

- Herein lies the problem (see also commentary in Hyman 2014, ‘How Autosegmental is Phonology?’):
 - The FSC in Table 8a refers only to the **tonal tier**
 - * This rules out those structures with two separate H tonemes (i.e. Table 7b,c,d), but not those with only one toneme which spreads across two moras (Table 7a,e)
 - The FSC of Table 8b fares no better, which references both the tonal tier and **mora tier**
 - * This, too, does not rule out the one-toneme structure (again, Table 7a,e)
 - At the same time, the FSC in Table 8c is insufficient the other way
 - * It does not rule out the two-toneme structures (Table 7b,c,d)
- A grammar requiring multiple FSCs misses an important generalization in unifying *LHH

tonal tier

mora tier

3 Solution

- The problem stems from formalizing *LHH as an FSC over an autosegmental representation
 - I.e. over multiple tiers simultaneously
- Instead, with a string of high-toned moras úú, what is required is *insensitivity* to whether there are one or two H tonemes on the tonal tier
- Our solution is a FSC as a **forbidden substring** rather than a **forbidden autosegmental representation** (i.e. a FSC referencing only one tier, here the mora tier)

forbidden substring
forbidden
autosegmental
representation

- This is reminiscent of the **Melody-Local** analyses of Jardine (2020)
 - Bifurcates constraints into operating either on a tonal tier or a ‘surface’ tier which includes information about the properties of each TBU
 - That is, *different parts of the grammar run in parallel on different representations*
 - Here, the *LHH constraint operates on this surface tier — a ‘flattened’ string that represents the properties of each mora
- In more detail:
 - Each individual piece of phonological structure on a tier is an ‘**element**’ (Table 9) element
 - Elements have precedence relations with other elements on the same tier
 - We can ‘flatten’ autosegmental representations to a string-based representation where **associations** are instead represented as **properties** of TBUs, in this case moras (see Jardine and Heinz 2015; Jardine 2017b, 2020 for various procedures for doing this)
 - * Formally, properties are **unary relations** on the set of elements in the structure (e.g., the set of elements that are μ moras) unary relations

Table 9: Associated elements across tiers acquire a ‘property’ of the other element

(a high tone element)	H		
(a moraic element)	μ	\Rightarrow	(a moraic element with a high tone property)

- With this in mind, let us reexamine potential FSCs (in Table 10, where each element in each tier is boxed)
- In Table 10a, the FSC references only a substring (i.e. a single tier), and thus is only sensitive to moras and their associated properties
- Crucially, *these properties themselves have no precedence or identity relations because they are not distinct elements*
- Therefore, in the string representation, there is no way to detect whether identical properties of two elements stem from the same source or not (i.e. whether they come from one H toneme or two)

Table 10: Forbidden substring (cf. forbidden autosegmental representations)

a.	Our proposal	Cf.	b.	Dismissed alternative 1	c.	Dismissed alternative 2
\neg	$\boxed{\mu} \rightarrow \boxed{\mu} \rightarrow \boxed{\mu}$		\neg	$\boxed{L} \rightarrow \boxed{H} \rightarrow \boxed{H}$ $\boxed{\mu} \rightarrow \boxed{\mu} \rightarrow \boxed{\mu}$	\neg	$\boxed{L} \rightarrow \boxed{H}$ $\boxed{\mu} \rightarrow \boxed{\mu} \rightarrow \boxed{\mu}$

- In total, an FSC referencing a forbidden substring on a single tier (i.e. Table 10a) correctly rules out all the ungrammatical structures in Table 7 (cf. 10b-c)

4 Summary

- This talk has examined phonological representations within formal constraints governing well-formed outputs (constraints of the types used in both traditional and computational phonology)

- Our focus was on a conspiracy to avoid LHH sequences in the Nigerian language Kalabari, what we called *LHH tonotactics
 - Observation: LHH sequences are banned regardless of whether they come from two separate H tonemes or one H toneme spread across two moras
 - Problem: A single forbidden substructure constraint (FSC) over an autosegmental representation cannot capture both contexts
 - Solution: A FSC stated over a single-tier substring of moras endowed with tonal ‘properties’ (reminiscent of ‘Melody-Local’ analyses à la [Jardine 2020](#))
- We leave with two questions
 - To what extent are FSCs over full autosegmental representations ever necessary?
 - * More pointedly, what limits are there on the types of autosegmental substructures which a constraint can refer to?
 - And is a simpler solution lurking in the data, which involves decomposing tonemes and downstep into tonal features? ([Snider 1999](#); [Yip 2001](#); [Lionnet 2025, inter alia](#))
 - * Perhaps in the end, all one needs is a single constraint referencing only **register features** on a **register tier** (i.e. **lhh*, rather than *LHH)

register features
register tier

References

Anonymous and Blench, R. (2008). Kalabari dictionary.

Bermúdez-Otero, R. (2025). A stratal study in abstractness.

Harry, O. G. (2004). *Aspects of the tonal system of Kalabari-Ijo*. CSLI Publications/Center for the Study of Language and Information, Stanford, Calif.

Harry, O. G. and Hyman, L. M. (2014). Phrasal construction tonology: The case of Kalabari. *Studies in Language*, 38(4):649–689.

Hyman, L. M. (2014). How autosegmental is phonology? *Linguistic Review*, 31(2).

Jardine, A. (2016). *Locality and non-linear representations in tonal phonology*. PhD thesis, University of Delaware.

Jardine, A. (2017a). The local nature of tone-association patterns. *Phonology*, 34:363–384.

Jardine, A. (2017b). On the logical complexity of autosegmental representations. In Kanazawa, M., de Groote, P., and Sadrzadeh, M., editors, *Proceedings of the 15th Meeting on the Mathematics of Language*, pages 22–35, London, UK. Association for Computational Linguistics.

Jardine, A. (2020). Melody learning and long-distance phonotactics in tone. *Natural Language and Linguistic Theory*, 38:1145–1195.

Jardine, A. and Heinz, J. (2015). A concatenation operation to derive autosegmental graphs. In *Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015)*, pages 139–151, Chicago, USA. Association for Computational Linguistics.

Jenewari, C. E. (1977). *Studies in Kalabari syntax*. PhD thesis, University of Ibadan.

Jenewari, C. E. W. (1980). *A linguistic guide to spoken Kalabari*. School of Humanities, University of Port Harcourt, Port Harcourt [Nigeria].

Lionnet, F. (2025). Tonal languages without tone: Downstep in Drubea and Numèè (Oceanic, New Caledonia). *Phonology*, 42:e23.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and sub-regular complexity. In *Formal Grammar*, volume 8036 of *Lecture Notes in Computer Science*, pages 90–108. Springer.

Rolle, N. and Harry, O. G. (2025). Why spread? Kalabari clitics spread their tone due to wordminimality, prosodic constituency, and *LHH tonotactics. *Phonological Data and Analysis*, 7(2).

Snider, K. (1999). *The Geometry and Features of Tone*. Arlington: Summer Institute of Linguistics.

Yip, M. (2001). Tonal features, tonal inventories and phonetic targets. In *UCL Working Papers in Linguistics*, pages 161–188. Oxford University Press.