Formal Language Theory and Phonology: Day 3

Jane Chandlee and Adam Jardine
July 10, 2023

1 Phonological processes as functions

So far we’ve been working with languages/stringsets, which as we’ve seen can be used
to model phonotactic constraints.

For example, the pattern of ‘final devoicing’ can be represented with the SL-2 grammar
{bx, dx, g, zK, ... }, or the set of strings that do not contain any of these 2-factors.

But phonology is more than phonotactics. When strings do contain these 2-factors, some
type of repair (usually devoicing) is employed. Depending on the theory we’re working
with, we might say the language has the following rule in its grammar:

1) [-son] — [—voice] / — x
Or, we might say it ranks these constraints in the following way:
(2) *[—son, +voice] x >> Ident(voice)

These are intensional descriptions, both of which describe the following extension or
map:

3) {(ab, ap), (ad, at), (ag, ak), (ba, ba), (da, da), (a, a), ... }

Notice we're still dealing with a set; it’s just a set of string pairs (input, output) rather
than strings.

We can then ask the same kinds of questions, like: how computationally complex is this
map? Or, how complex is the computation of an output string for a given input string?
How much (or what kind of) information does the device that performs this computa-
tion need?

As before, we can start with regular. The regular languages have a counterpart called
the regular relations. Decades ago it was shown by Johnson (1972) and (Kaplan and
Kay, 1981, 1994) that SPE grammars describe regular relations provided the rules can’t
reapply to their own structural change.!

But also as before, we can be more restrictive than regular. One hypothesis is that phono-
logical maps are subsequential functions (Mohri, 1997). This hypothesis is too strong:
some attested processes are more complex than subsequential, but a lot of them aren’t.
So again it’s a good place to start.

intensional

extension
map

string pairs

regular relations

IThe need for this restriction is
demonstrated with the rule) — ab
/ a b, which can otherwise
generate a™b"™.

subsequential functions

2 Subsequential functions

As with languages, there are multiple ways to represent maps, but we’ll be using an ab-
stract characterization based on the concept of tails. tails

First recall that a prefix of a string is any substring that includes the beginning. For a
set of strings S, we can define the common prefixes as the set of prefixes shared by all common prefixes
strings in S.

For example, if S = {abc, abed, abaa, abdac}, then the common prefixes of S, or comprefs(S)
={\, a,ab}.

The longest common prefix of a set S (or the 1cp(S)) is the longest string in comprefs(S). longest common prefix
In our example, 1cp(S) = ab.

For a given function f : £* — A*2 and a string z € ¥*, we define f? () as follows: 2Note the distinction between an
input alphabet and an output
alphabet.

fP(x) = lep({f(zu) : u € X7})

Let’s use an example to unpack this definition. Let ¥ = A = {a, b, c} and let f be the
function such that an a immediately following a b is turned into a c.

f(bac) = bee
f(ba) = be
f(abc) = abe
etc.

Now whatis f?(ab)? First consider all the ways we can extend the string ab: aba, abb, abc, abaa, abab, abac,
etc. There are of course an infinite number of expansions.

We take each of these strings, apply f to it, and then compile the resulting output strings
into a set:

{ab, abe, abb, abe, abea, abeb, abee, ... }

What is the 1cp of this set? It’s ab'® So fP(ab) = ab. 3Notice how we don’t need to
enumerate the entire (infinite) set to

determine this 1cp. For any input

Now we define the tail function f, as follows: string that starts with ab, the output
will also start with ab, because f
d t alter thi .
fl, (u) — v such that fp(x)v _ f(:["u,) 0€es not alter this sequence

tail function
Again let’s unpack this definition. In the above example, again with x = ab, what is:

fav(a)?
fab(b)?
fab(c)?

Now let z = ba. What is:

fba (a)
fba (b)
fba (C)

So this means the strings ab and ba have different tail functions. A given function will
have some set of these tail functions.

How many tail functions does the identity function (f(z) =) have?

This (finally!) leads us to our definition of subsequential:

Definition 1 (Subsequential function). A function fis subsequential iff the set {f, : © € £*}
is finite.
This looks familiar! Remember the regular languages are those with a finite set of equiv-

alence classes. Two strings are equivalent w.r.t. a language if they ‘behave’ the same no
matter how you extend them.

Tail functions also establish equivalence classes. Two strings are equivalent w.r.t. a func-
tion if they have the same tail function, meaning each possible input extension has the
same effect on the output.

Note now there is a directionality built into the tail functions: we’re always looking at
what comes to the left.

There is a right-subsequential class that we get by reversing the (left-)subsequential
functions.

3 Non-subsequential functions

A common process in tone is unbounded tone plateauing (UTP) (Kisseberth and Odden,
2003; Hyman, 2011).

4) UTP in Luganda (Hyman and Katamba, 2010)

/ki-képo/ [kiképo] ‘cup’

/ki-siki/ [kisiki] ‘log’

/mu-tund-a/ [mutunda] ‘seller” (from /-tund-/ ‘to sell’)
/mu-tém-a/ [mutéma] ‘chopper’ (from /-tém-/ ‘to chop’)
/mu-tund-a bi-képo/ [mu-tund-a bi-képo] ‘cup seller’
/mu-tém-a bi-siki/ /mu-tém-4 bi-siki/ ‘log chopper’

me a0 o

Over strings of TBUs, this looks something like this:

(5) UTP as a string map
Hooo - Hooo
oooH — oooH
HoooH — HHHHH

Let’s call this map p and assume an input and output alphabet of ¥ = {H,@}. This
function p is not subsequential. Let’s see why.

right-subsequential

unbounded tone plateauing (UTP)

(It’s also not right-subsequential. Can you think of why?)

4 Hierarchy of functions

We talked about the subregular hierarchy of languages, but is there a subregular hierar-
chy of functions?

Of course there is!

[Regular relations]

/

[Left Subsequential] [Right Subsequential]

[Left Output TSL] ' Input TSL ' [Right Output TSL]

@Jt SL [Right Output SL]

' Finite '

Figure 1: Subregular hierarchy of functions

/

\

Left Output SL

\

Why is this useful? As we noted on Day 1: one reason is typology. The vast majority

of phonological processes are subsequential (or below).* Non-subsequential functions *0Of course, we c0}1111d have a
appear to be the exception, not the rule, and these categories give us a way of formally gﬁfggg?;?ﬂga ?’;;‘jtorﬁvyvr e e

characterizing the nature of that exceptionality.

Put another way, even though non-subsequential phonological maps exist, subsequen-
tiality is still a useful basis from which to study the nature of phonological computation.
Consider the following quotation from Howard (1972), defending his theory of direc-
tional rules even though it left some attested patterns without a satisfactory account:

“We must understand that the theories we offer are merely steps toward the
right answer and that each theory must be judged in comparison with alter-
native theories in terms of their ability to deal with the knowledge currently
available. Most importantly, we must regard a theory as a research tool. By
attempting to force what we know and what we believe to be true into a
single logical framework we become more aware of the pieces that don't fit
in, of the internal inconsistencies, and of problems that remain unresolved”
(Howard, 1972, 2-3).

Another reason subregularity matters is learning. The regular relations are not formally
learnable from only positive data. But everything below them in the hierarchy can be
learned in this way. More on that in our final class!

5 Next time

¢ Reading: Nowak et al. (2002)
¢ Task: Come up with three distinct meanings of the word ‘learning’.

* Also, we plan/hope to reserve some time at the end of the last class for open dis-
cussion, so feel free to prepare some clarification questions or topics of interest that
we haven’t been able to cover.

References

Howard, I. (1972). A directional theory of rule application in phonology. PhD thesis, MIT.

Hyman, L. (2011). Tone: Is it different? In Goldsmith, J. A., Riggle, J., and Yu, A. C. L,,
editors, The Blackwell Handbook of Phonological Theory, pages 197-238. Wiley-Blackwell.

Hyman, L. and Katamba, F. X. (2010). Tone, syntax and prosodic domains in Luganda.
In Downing, L., Rialland, A., Beltzung, J.-M., Manus, S., Patin, C., and Riedel, K,
editors, Papers from the Workshop on Bantu Relative Clauses, volume 53 of ZAS Papers in
Linguistics, pages 69-98. ZAS Berlin.

Johnson, C. (1972). Formal Aspects of Phonological Description. Mouton, The Hague.

Kaplan, R. and Kay, M. (1981). Phonological rules and finite state transducers. Paper
presented at ACL/ LSA Conference, New York.

Kaplan, R. and Kay, M. (1994). Regular models of phonological rule systems. Computa-
tional Linguistics, 20:371-387.

Kisseberth, C. and Odden, D. (2003). Tone. In Nurse, D. and Philippson, G., editors, The
Bantu Languages. New York: Routledge.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23:269-311.

Nowak, M. A, Komarova, N. L., and Niyogi, P. (2002). Computational and evolutionary
aspects of language. Nature, 417:611-617.

	Phonological processes as functions
	Subsequential functions
	Non-subsequential functions
	Hierarchy of functions
	Next time

