
Formal Language Theory and Phonology: Day 1

Jane Chandlee and Adam Jardine

July 3, 2023

1 Why formal language theory?

Key takeaways from (Heinz, 2018)):
Heinz, J. (2018). The
computational nature of
phonological generalizations.
In Hyman, L. and Plank, F.,
editors, Phonological Typology,
Phonetics and Phonology,
chapter 5, pages 126–195. De
Gruyter Mouton

There are important computational generalizations about phonological patterns
that are missed by existing theories of the phonological grammar.

The goal is to characterize phonology in a way that is both sufficiently expressive
to account for cross-linguistic variation while also being sufficiently restrictive to
distinguish ‘phonologically-possible’ from ‘logically-possible’ patterns. In addi-
tion, we want these characterizations to help us understand how phonology is
learned.

FLT offers an approach to these goals that is ‘about as atheoretical as one can get’,
because it explicitly distinguishes the intensional description of a pattern from intensional description
its extension. extension

Given a phonological pattern (e.g., a phonotactic constraint, a process, even an
entire grammar), we categorize it based on its computational complexity. Theoret-
ical computer science provides many such complexity categories, but we want
to zero in on those that are sufficient for phonological patterns in particular.

Doing this provides 1) falsifiable hypotheses for what is and isn’t possible in
phonological systems, and 2) a theory-neutral understanding of what phonol-
ogy is (i.e., universal properties).

• NOTE: This course will focus on the language-theoretic characterizations
of formal languages and string-to-string mappings. There is a great deal of
work on equivalent characterizations in other formalisms including finite-
state automata, first order logic, and algebra. We won’t have time to cover
these, but a further reading list will be provided. Importantly, all of these
characterizations converge to describe the same formal classes.

1

2 Basic concepts and notations

Let A be a set of objects, for example A = {1, 2, 3}. Then ∈ indicates an object is set
in the set (1 ∈ A), and /∈ indicates an object is not in the set (4 /∈ A). The unique
empty set that includes no objects is ∅. empty set

A subset D of a set E is a set whose objects are all also in E. For example, subset
B = {1, 2} is a subset of A (defined above) because 1 ∈ A and 2 ∈ A. We write
B ⊆ A. But C = {3, 4} is not a subset of A, because 4 /∈ A. So we write C 6⊆ A.

We use Σ to designate an alphabet, or a set of symbols. When working with alphabet
phonology these symbols are typically segments and boundaries, e.g. Σ = {æ, A,
@, E, i, n, m, N, ..., +, ...}, but for basic examples we often use lowercase letters
starting from the beginning of the alphabet, e.g., Σ = {a, b, c}.

A string is a finite1 sequence of symbols from Σ. We typically use lowercase let- string
1Infinite strings are a thing, but
not in this course!

ters near the end of the alphabet as variables for strings, e.g., z = abca.

The length of a string w is designated with |w| and indicates the number of sym- length
bols, e.g., |z| = 4. This same notation is used for the number of objects in a set,
so |A| = 3.

The unique empty string is represented with λ and is the string with no symbols, empty string
e.g., |λ| = 0.

The set of all strings of symbols from Σ of any length is Σ∗ (‘Sigma-star’). The set Σ∗

of all strings of symbols from Σ of length at least one is Σ+. Note these are both Σ+

infinite sets.

What string is in Σ∗ but not Σ+?

The set of all strings of length n is Σn and the set of all strings of lengths up to
and including n is Σ≤n. Note these are both finite sets.

If Σ = {a, b}, what is Σ3? What is Σ≤2?

2

We use a concatenation operator · to combine strings. So if x = ab and y = cd, concatenation
x · y = abcd and y · x = cdab. But this operator is sometimes omitted, in which
case we use xy and yx to mean the same thing.

We can also use concatenation to break a string into substrings. Consider the
string w = abcd. This string can be see as the concatenation of smaller strings,
for example, a · bc · d. In fact we can break this string apart in many ways:

x y z

1 λ a bcd
2 λ ab cd
3 λ abc d
4 λ abcd λ
5 a bcd λ
6 a bc d
7 a b cd
8 ab cd λ
9 ab c d
10 abc d λ
11 abcd λ λ

Formally, a substring of a string w is any string y such that there exist (possibly substring
empty) strings x and z such that w = x · y · z.

A prefix of a string is a substring that starts from the beginning. So looking at prefix
just the y column of the above table, rows 1, 2, 3, 4, and 11 include the prefixes of
w. Similarly, a suffix of a string is a substring that includes the end. In rows 4, 5, suffix
8, 10, and 11, y is a suffix of w.

Note that these terms have no morphological meaning. Also note that the term
‘substring’ does not necessarily mean shorter than the original string. As defined
here a given string is a substring, prefix, and suffix of itself.

If z = welcome!, what are the prefixes of z? What are the suffixes?

Lastly, in practice we often want to explicitly refer to the start and end of a string.
We use the symbols o (‘open fish’; start of string) and n (‘close fish’; end of
string) for this purpose. These symbols are not included in the alphabet, but
rather augment strings created from the alphabet. Formally we represent this
with {o} · Σ∗ · {n}. (Note the use of the concatenation operator with sets.)

3

3 Languages, language classes, grammars

A language, L, is a set of strings (we might actually use the terms language and language
stringset interchangeably). Formally, L ⊆ Σ∗.

Because a set is a subset of itself, Σ∗ is itself a language. It can be thought of as an
unrestricted language, since it includes any combination of alphabet symbols of
any length. In practice the languages we’ll be working with do place restrictions
on strings, so they are proper subsets of Σ∗. proper subsets

For example, we might define a language that only includes strings of even
length:

Le = {w ∈ Σ∗ : |w| is even}

As linguists we also generally assume the languages we work with are infinite.
But infinite objects are kind of difficult to look at, which is why we also assume
the existence of a grammar. A grammar is a finite representation of the language. grammar

Grammars are both recognizers and generators. They recognize or distinguish recognizers
generatorsstrings that are in the language from those that are not, and they also generate

all and only the strings in the language. Any device that performs these tasks
correctly is a grammar for the language. What that device looks like and how it
performs this work is essentially a choice of implementation.

As noted above, in this class we are going to be focused more on languages than
grammars, but we still assume a grammar exists. This is important, because not
all languages have grammars! So as a starting point, we can use this fact to define
a class of languages, L. class of languages

L = {L : L is a language and L has a grammar}

This language class has a name: computably enumerable.2 Its definition in- computably enumerable
2It’s also called recursively
enumerable.

cludes a restriction, but this restriction is quite weak when it comes to natural
languages in general and phonology in particular. So from here we’re going to
‘zoom in’ more and define further restrictions.

A couple of additional language classes that we’re going to skip over are the
context-sensitive languages and the context-free languages. Both of these are context-sensitive

context-freeincluded in L defined above, but they include additional restrictions.

The important thing is that when we study individual phonological patterns
(e.g., final devoicing in German, sibilant harmony in Navajo, etc.), we represent
them as languages. But more broadly we want to know the class of languages
these patterns belong to.

4

When it comes to phonology, the class of regular languages is an important one, regular languages
so we’ll start there.

4 What are the regular languages?

We will give a language-theoretic characterization of the regular languages. A language-theoretic
characterizationlanguage-theoretic characterization is abstract, meaning that it is either true or

not true of a language itself, and not tied to any particular grammar formalism.

We’ll use the language (ab)n to illustrate: (ab)n

(ab)n = {λ, ab, abab, ababab, abababab, ...}

Some more notation:

• Two strings w and v are equivalent with respect to L if and only if, for all equivalent with respect to L

suffixes u,
wu ∈ L if and only if vu ∈ L

We write w ≡L v if w and v are equivalent with respect to L.

• For each string w below, what are some strings v such that w ≡(ab)n v?

ab λ a bb

• Now consider are anbn: anbn

(ab)n = {λ, ab, aabb, aaabbb, aaaabbbb, ...}

For each string w below, what are some strings v such that w ≡anbn v?

ab λ a aa aaab aabbb

5

• Think about sets of strings that are equivalent under with respect to each
language. How do these sets differ for (ab)n and anbn?

The Myhill-Nerode theorem (Nerode, 1958; Rabin and Scott, 1959) is a language- Myhill-Nerode theorem

Nerode, A. (1958). Linear
automaton transformations.
Proceedings of the American
Mathematical Society,
9(4):541–544
Rabin, M. O. and Scott, D.
(1959). Finite automata and
their decision problems. IBM
Journal of Research and
Development, 3(2):114–125

theoretic characterization of the regular languages:

Theorem 1 (The Myhill-Nerode theorem) A language L is regular if and only if
≡L categorizes (more technically, partitions) all strings in Σ∗ into a finite number of
nonempty categories such that for any two stringsw and v in the same category,w ≡L v.

Note that this is true for (ab)n but not for anbn.

This is a deep, fundamental property of the regular languages. Many specific
grammar formalisms capture exactly the regular languages:

• right-linear (Type III) grammars (Chomsky, 1956)

• regular expressions (Kleene, 1956)

• finite-state machines (Kleene, 1956)

• monadic second-order logic (Büchi, 1960; Trakhtenbrot, 1961)

• ...

However, the Myhill-Nerode Theorem shows that they all somehow capture the
same deep, structural property of the regular languages.

5 Next time

Readings: Rogers and Pullum (2011) and Heinz (2010)

Task: Given the language anbn, how many columns do we need to place every
string in Σ∗ in a column of strings that are equivalent to each other with respect
to anbn? (This is essentially the first bullet point at the top of this page.)

6

References

Büchi, J. R. (1960). Weak second-order arithmetic and finite automata. Zeitschrift
für Mathematische Logik und Grundlagen der Mathmatik, 6:66—92.

Chomsky, N. (1956). Three models for the description of language. IRE Transac-
tions on Information Theory, pages 113–124.

Heinz, J. (2010). Learning long-distance phonotactics. Linguistic Inquiry,
41(4):623–661.

Heinz, J. (2018). The computational nature of phonological generalizations. In
Hyman, L. and Plank, F., editors, Phonological Typology, Phonetics and Phonol-
ogy, chapter 5, pages 126–195. De Gruyter Mouton.

Kleene, S. C. (1956). Representation of events in nerve nets and finite automata.
In Automata Studies, pages 3–42. Princeton: Princeton University Press.

Nerode, A. (1958). Linear automaton transformations. Proceedings of the American
Mathematical Society, 9(4):541–544.

Rabin, M. O. and Scott, D. (1959). Finite automata and their decision problems.
IBM Journal of Research and Development, 3(2):114–125.

Rogers, J. and Pullum, G. (2011). Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information, (20):329–342.

Trakhtenbrot, B. A. (1961). Finite automata and logic of monadic predicates.
Doklady Akademii Nauk SSSR, 140:326–329.

7

	Why formal language theory?
	Basic concepts and notations
	Languages, language classes, grammars
	What are the regular languages?
	Next time

