
A subregular approach to the
problem of learning underlying

representations
Adam Jardine

Rutgers University

December 9, 2019 · Tel Aviv University

What is the nature of phonology?

URs
SRs

PH

What is the nature of:
• constraints on SRs? URs? (Halle, 1959; Prince and Smolensky, 1993; Gorman, 2013)

• maps from URs to SRs? (Chomsky and Halle, 1968; Johnson, 1972)

• relation between SRs and URs?
(Hyman, 1970; Kiparsky, 1973; Kenstowicz and Kisseberth, 1977)

2

What is the nature of phonology?

URs
SRs

PH

What is the computational nature of (learning)
• constraints on SRs? URs? (Heinz, 2009, 2010)

• maps from URs to SRs? (Jardine et al., 2014; Chandlee and Heinz, 2018)

• relation between SRs and URs?

3

Learning URs and a grammar

morphemes

URs

SRs

UR

PH

PH

• Computational restrictions on maps from URs to SRs provide avenue for
learning URs and a grammar

• This includes restrictions on relation between SRs and URs

4

Learning URs and a grammar

• Learning problem: the simultaneous inference of URs and a
grammar from SRs in a morphological paradigm

(Tesar, 2014; Cotterell et al., 2015; Rasin et al., 2018)

• Today: the subsequential functions provide a structure that
can solve this problem

(Mohri, 1997; Heinz and Lai, 2013; Jardine et al., 2014)

• More speci�cally, we’ll look at input strictly local (ISL)
functions (Chandlee and Heinz, 2018)

5

Learning URs and a grammar

• This poses further restrictions on the relationship between
SRs and URs

• This is joint work with students at Rutgers

Wenyue Hua Huteng Dai

• This is very much work in progress!

6

The learning problem

The learning problem

English plural:

cat-PL [kæts]
cuff-PL [k2fs]
death-PL [dETs]
girl-PL [g@rlz]
chair-PL [tSerz]
boy-PL [bOIz]
.

Analysis:
• A map from morphemes to URs

cat → /kæt/
PL → /z/
... ...

• A map from URs to SRs

/z/→ [s] / [−voi]

7

The learning problem
• M : �nite set of morphemes {cat, dog, ..., PL}
• Σ: �nite set of segments {a, b, B, ..., z}
• Learning targets:

– lexicon function UR : M ∗ → Σ∗ UR(cat) = kæt
UR(PL) = z
UR(cat-PL) = kætz
... ...

– phonology function PH : Σ∗ → Σ∗ PH(kæt) = kæt
PH(dOgz) = dOgz
PH(kætz) = kæts
PH(bnIkz) = bnIks
... ...

8

The learning problem

• Learning data is a �nite sample of PH ◦ UR

w ∈M ∗ PH(UR(w))

cat-PL kæts
cuff-PL k2fs
death-PL dETs
girl-PL g@rlz
chair-PL tSerz
boy-PL bOIz

9

The learning problem

• Problem: identify UR and PH from a �nite sample of PH ◦ UR

• Questions: What is the nature of ...
– UR

– PH

– PH ◦ UR
– the data sample

...such that learning is possible?

10

Subsequentiality and
phonology

Subsequentiality and phonology
• Johnson (1972); Kaplan and Kay (1994): phonological maps are
regular

m
em

or
y

length of w

m
em

or
y

length of w

regular non-regular

E.g., directional harmony E.g., “majority rules” (Baković, 2000)
/kaki-kæ/ 7→ [kaki-ka]
/kiki-kæ/ 7→ [kiki-kæ]

/kaka-kæ/ 7→ [kaka-ka]
/kæka-kæ/ 7→ [kækæ-kæ]

11

Subsequentiality and phonology

• Mohri (1997); Heinz and Lai (2013): Phonological maps are
subsequential;
– they are regular, and
– they are deterministic

computable functions

RegSubseq

12

Subsequentiality and phonology

• Subsequential: output can be determined deterministically
in one direction

/ `1 `2 `3 ... τ r1 ... rk ... rn /

[... τ ′ ...]

any length bound by k

• (Determinisic 6= no optionality; Heinz in progress)

13

Subsequentiality and phonology

• The subsequentiality of phonology is empirically
well-supported (Chandlee and Heinz, 2012; Heinz and Lai, 2013; Payne, 2017; Luo,

2017; Chandlee and Heinz, 2018)

computable functions

RegSubseq

phonology

• Though c.f. Jardine (2016); McCollum et al. (2017)

14

Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) =

15

Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) = aa

15

Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) = aa
lcp({bac, abc}) =

15

Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) = aa
lcp({bac, abc}) = λ

15

Subsequentiality and phonology

• Take a function f

f (tat) = tat
f (tatta) = tatta
f (tadta) = tadda
f (dtd) = ddd
f (tadtta) = taddta

. . .


t → d / d (simul.)

16

Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

17

Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = lcp({ f (tad),
f (tada),
f (tadd),
f (tadt),
f (tadaa),
. . . })

17

Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = lcp({ f (tad) = tad,
f (tada) = tada,
f (tadd) = tadd,
f (tadt) = tadd,
f (tadaa) = tadaa,
. . . })

17

Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = lcp({ f (tad) = tad,
f (tada) = tada,
f (tadd) = tadd,
f (tadt) = tadd,
f (tadaa) = tadaa,
. . . })

17

Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}
f p(tad) = tad

17

Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = tad
f p(tadt) = lcp({ f (tadt) = tadd,

f (tadta) = tadda,
f (tadtd) = taddd,
f (tadtt) = taddt,
f (tadtaa) = taddaa,
. . . })

17

Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}
f p(tad) = tad
f p(tadt) = tadd

17

Subsequentiality and phonology

• f p(w) is the contribution of w to any f (wv)

f (wv) = a b a ... a b a ... b

f p(w)

• f p grows proportionally i� f subsequential...

mp(kækak) = lcp({kækækæ, kakaka,...}))
= k

18

Subsequentiality and phonology

• For w ∈ Σ∗, the environment function is

fw(v)
def
= f p(w)−1f (wv)

f (wv) = a b a ... a b a ... b

f p(w) fw(v)

19

Subsequentiality and phonology

• For w ∈ Σ∗, the environment function is

fw(v)
def
= f p(w)−1f (wv)

f (wv) = a b a ... a b a ... b

f p(w) fw(v)

• Ex. ftad(ta) = f p(tad)−1f (tadta)
= (tad)−1tadda
= da

19

Subsequentiality and phonology

• For w ∈ Σ∗, the environment function is

fw(v)
def
= f p(w)−1f (wv)

f (wv) = a b a ... a b a ... b

f p(w) fw(v)

• Ex. ftad(ta) = f p(tad)−1f (tadta)
= (tad)−1tadda
= da

ftat(ta) = f p(tat)−1f (tatta)
= (tat)−1tatta
= ta

19

Subsequentiality and phonology

• f is subsequential i� it has �nite environment functions

w fw(ta)

a ta
t ta
aa ta
at ta
dt ta
tt ta
aaa ta
... ...

w fw(ta)

d da
ad da
dd da
td da
aad da
add da
... ...

20

Subsequentiality and phonology

• f is subsequential i� it has �nite environment functions

w fw(ta)

a ta
t ta
aa ta
... ...

w fw(ta)

d da
ad da
dd da
... ...

fa = ft = ... = faaa = ... = ftatat = ...= fa/t
fd = fad = ... = faad = ... = ftatad = ...= fd

20

Subsequentiality and phonology

• Environment functions correspond to states in a
deterministic �nite-state transducer (Mohri, 1997)

• There are procedures for determining environment functions
from positive data (Oncina et al., 1993; Chandlee et al., 2014; Jardine et al., 2014)

• If f ’s environment functions represent k − 1 su�xes, f is
input strictly k-local (ISLk) (Chandlee, 2014; Chandlee and Heinz, 2018)

f → {fa/t, fd}

21

Towards a solution

Towards a solution

• M : set of morphemes; Σ: �nite set of segments
• lexicon function UR : M ∗ → Σ∗

phonology function PH : Σ∗ → Σ∗

• Problem: identify UR and PH from a �nite sample of PH ◦ UR

22

Towards a solution
• Example:

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

w PH(UR(w))

r1s1 tatta
r1s2 tatda
r1s3 tata

w PH(UR(w))

r2s1 tadda
r2s2 tadda
r2s3 tada

w PH(UR(w))

r3s1 ata
r3s2 ada
r3s3 aa

23

Towards a solution

• M : set of morphemes; Σ: �nite set of segments
• lexicon function UR : M ∗ → Σ∗

phonology function PH : Σ∗ → Σ∗

• Problem: identify UR and PH from a �nite sample of PH ◦ UR
• What is the nature of ...

– UR

– PH

– PH ◦ UR ...?

24

Towards a solution

• M : set of morphemes; Σ: �nite set of segments
• lexicon function UR : M ∗ → Σ∗

phonology function PH : Σ∗ → Σ∗

• Problem: identify UR and PH from a �nite sample of PH ◦ UR
• The nature of ...

– UR

– PH

– PH ◦ UR ...is subsequential

24

Towards a solution

Assumptions:
• UR has one environment function (= UR)

URw(cat)= kæt for any w ∈M ∗;
URw(PL) = z for any w ∈M ∗; etc.

25

Towards a solution

Assumptions:
• UR has one environment function (= UR)

URw(cat)= kæt for any w ∈M ∗;
URw(PL) = z for any w ∈M ∗; etc.

• PH is ISL2
• That is, its environment functions are of the form PHσ, σ ∈ Σ

Σ = {t, a, d} → possible env. functions are PHa, PHt, PHd

25

Towards a solution

Strategy:
• Two hypotheses UR′ and PH′

• We modify UR′ so it has one environment function

• We make the opposite change in PH′ to remain consistent
with input data

26

The procedure

The procedure

• Running example D ⊂ PH ◦ UR

Sample of PH ◦ UR
w PH(UR(w))

r1s1 tatta
r1s2 tatda
r1s3 tata

w PH(UR(w))

r2s1 tadda
r2s2 tadda
r2s3 tada

w PH(UR(w))

r3s1 ata
r3s2 ada
r3s3 aa

27

The procedure

• Initialize PH′ to the identity function

PH′(tad) = tad, PH′(tatta) = tatta, PH′(tadta) = tadta, etc.

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:t

d:d

28

The procedure

• Initialize UR′ to a pre�x tree transducer representing D

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

29

The procedure

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s1 r2s3r2s2 r3s3r3s2r3s1

r1

r2

r3

s1

s2

s3 s3

s2

s1 s3

s2

s1

30

The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: Dp
λ(r1)

r2

r3

s1

s2

s3 s3

s2

s1 s3

s2

s1

30

The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2

r3

s1

s2

s3 s3

s2

s1 s3

s2

s1

30

The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2

r3

s1 : D
p
r1
(s1)

s2

s3 s3

s2

s1 s3

s2

s1

30

The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2

r3

s1 : ta

s2

s3 s3

s2

s1 s3

s2

s1

30

The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2

r3

s1 : ta

s2 : da

s3 : a s3

s2

s1 s3

s2

s1

30

The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2 : tad

r3

s1 : ta

s2 : da

s3 : a s3 : a

s2 : da

s1 : da s3

s2

s1

30

The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2 : tad

r3 : a

s1 : ta

s2 : da

s3 : a s3 : a

s2 : da

s1 : da s3 : a

s2 : da

s1 : ta

30

The procedure

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: tat

r2: tad

r3: a

s1: ta

s2: da

s3: a s3: a

s2: da

s1: da s3: a

s2: da

s1: ta

30

The procedure

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: tat

r2: tad

r3: a

s1: ta

s2: da

s3: a s3: a

s2: da

s1: da s3: a

s2: da

s1: ta

30

The procedure

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:t

d:d

ws1 env. s1
r1s1 tat ta
r3s1 a ta
r2s1 tad da

31

The procedure

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:��t
d

d:d

λ

r2

r2s3r2s2r2s1

r2: tad

s3: a

s2: da

s1:
t
��da

32

The procedure

UR′ PH′

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: tat

r2: tad

r3: a

s1: ta

s2: da

s3: a s3: a

s2: da

s1: ta s3: a

s2: da

s1: ta

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:d

d:d

UR′(r1s1) = tatta PH′(tatta) = tatta
UR′(r2s1) = tadta PH′(tadta) = tadda

33

The procedure – summary

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

• Correct UR′ and PH′ from a sample of PH ◦ UR
• This dependent on the

– the subsequentiality of UR and PH

– that UR maps one morpheme to one UR
– that PH is ISL2

34

The procedure – summary

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

• A learner based on this procedure can learn ISL2:
• progressive assim./dissim. • deletion
• regressive assim./dissim. • epenthesis

• This includes opacity (self-counterbleeding)
• So far we are limited to single processes

35

The procedure – summary

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

• It requires that the UR is recoverable from PH ◦ UR

• What are the constraints on PH? On PH ◦ UR?

36

The procedure – summary

PHt

PHa

PHd

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:d

d:d

• Environment functions PHw must split into change and
elsewhere functions

• Any change PHmakes must be seen at morpheme boundaries
• Formalizing these constraints on PH ◦ UR is work in progress

37

Discussion

What is the nature of phonology?

URs
SRs

PH

What is the nature of:
• maps from URs to SRs?
• relation between SRs and URs?

38

What is the nature of phonology?

morphemes

URs

SRs

UR

PH

PH

Assuming
• subsequential maps from URs to SRs, and
• a (relatively) concrete relation between SRs and URs

...allows for a procedure for learning URs and a grammar
39

Future work
• Formalizing “relatively concrete”

• Extending to cases in which PH is...

– ISL2
– ISLk for some k
– in any subsequential class with a shared structure (Jardine et al., 2014)

– output-strictly local (Chandlee et al., 2015)

• Extending to...

– featural learning (Heinz and Koirala, 2010; Chandlee et al., 2019)

– optional/gradient processes
(Shibata and Heinz, 2019; Beros and de la Higuera, 2016)

40

Acknowledgements

Thank you for having me!

...and many thanks to Wenyue Hua and Huteng Dai, attendees of
the Rutgers/SBU/Haverford/Delaware subregular phonology

workshop, the Rutgers MathLing group, an audience at NECPhon,
and in particular Je� Heinz, Charles Reiss, Bruce Tesar, Adam
McCollum, and Colin Wilson for their insightful comments.

41

Appendix: Regressive assimilation

w UR(w) PH ◦ UR(w)

r1s1 tatta tatta
r1s2 tatda tadda
r1s3 tata tata

r2s1 tadda tadda
r2s2 tadta tadta
r2s3 tada tada

r3s1 ata ata
r3s2 ada ada
r3s3 aa aa

PHt

PHa

PHd

t:t

a:ta

d:dd

t:λ
d:d

a:a

a:a
t:λ

d:d

A1

Appendix: Regressive assimilation
w UR(w) PH ◦ UR(w)

r1s1 tatta tatta
r1s2 tatda tadda
r1s3 tata tata

r2s1 tadda tadda
r2s2 tadta tadta
r2s3 tada tada

r3s1 ata ata
r3s2 ada ada
r3s3 aa aa

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: ta

r2:tad

r3: a

s1: tta

s2: dda

s3: ta

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

A2

Appendix: Regressive assimilation

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: ta

r2:tad

r3: a

s1: tta

s2: dda

s3: ta

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:t

d:d

A3

Appendix: Regressive assimilation

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: tat

r2:tad

r3: a

s1: tta

s2: dda

s3: ta

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

PH′t

PH′a

PH′d

t:λ

a:a

d:d

t:λ
d:d

a:a

a:a
t:λ

d:d

A4

Appendix: Regressive assimilation

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: tat

r2:tad

r3: a

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

PH′t

PH′a

PH′d

t:t

a:ta

d:dd

t:λ
d:d

a:a

a:a
t:λ

d:d

A5

