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What is the nature of phonology?

URs
SRs

PH

What is the nature of:
• constraints on SRs? URs? (Halle, 1959; Prince and Smolensky, 1993; Gorman, 2013)

• maps from URs to SRs? (Chomsky and Halle, 1968; Johnson, 1972)

• relation between SRs and URs?
(Hyman, 1970; Kiparsky, 1973; Kenstowicz and Kisseberth, 1977)
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What is the nature of phonology?

URs
SRs

PH

What is the computational nature of (learning)
• constraints on SRs? URs? (Heinz, 2009, 2010)

• maps from URs to SRs? (Jardine et al., 2014; Chandlee and Heinz, 2018)

• relation between SRs and URs?
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Learning URs and a grammar

morphemes

URs

SRs

UR

PH

PH

• Computational restrictions on maps from URs to SRs provide avenue for
learning URs and a grammar

• This includes restrictions on relation between SRs and URs
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Learning URs and a grammar

• Learning problem: the simultaneous inference of URs and a
grammar from SRs in a morphological paradigm

(Tesar, 2014; Cotterell et al., 2015; Rasin et al., 2018)

• Today: the subsequential functions provide a structure that
can solve this problem

(Mohri, 1997; Heinz and Lai, 2013; Jardine et al., 2014)

• More speci�cally, we’ll look at input strictly local (ISL)
functions (Chandlee and Heinz, 2018)
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Learning URs and a grammar

• This poses further restrictions on the relationship between
SRs and URs

• This is joint work with students at Rutgers

Wenyue Hua Huteng Dai

• This is very much work in progress!
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The learning problem



The learning problem

English plural:

cat-PL [kæts]
cuff-PL [k2fs]
death-PL [dETs]
girl-PL [g@rlz]
chair-PL [tSerz]
boy-PL [bOIz]
. . . . . .

Analysis:
• A map from morphemes to URs

cat → /kæt/
PL → /z/
... ...

• A map from URs to SRs

/z/→ [s] / [−voi]
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The learning problem
• M : �nite set of morphemes {cat, dog, ..., PL}
• Σ: �nite set of segments {a, b, B, ..., z}
• Learning targets:

– lexicon function UR : M ∗ → Σ∗ UR(cat) = kæt
UR(PL) = z
UR(cat-PL) = kætz
... ...

– phonology function PH : Σ∗ → Σ∗ PH(kæt) = kæt
PH(dOgz) = dOgz
PH(kætz) = kæts
PH(bnIkz) = bnIks
... ...
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The learning problem

• Learning data is a �nite sample of PH ◦ UR

w ∈M ∗ PH(UR(w))

cat-PL kæts
cuff-PL k2fs
death-PL dETs
girl-PL g@rlz
chair-PL tSerz
boy-PL bOIz
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The learning problem

• Problem: identify UR and PH from a �nite sample of PH ◦ UR

• Questions: What is the nature of ...
– UR

– PH

– PH ◦ UR
– the data sample

...such that learning is possible?

10



Subsequentiality and
phonology



Subsequentiality and phonology
• Johnson (1972); Kaplan and Kay (1994): phonological maps are
regular

m
em

or
y

length of w

m
em

or
y

length of w

regular non-regular

E.g., directional harmony E.g., “majority rules” (Baković, 2000)
/kaki-kæ/ 7→ [kaki-ka]
/kiki-kæ/ 7→ [kiki-kæ]

/kaka-kæ/ 7→ [kaka-ka]
/kæka-kæ/ 7→ [kækæ-kæ]
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Subsequentiality and phonology

• Mohri (1997); Heinz and Lai (2013): Phonological maps are
subsequential;
– they are regular, and
– they are deterministic

computable functions

RegSubseq
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Subsequentiality and phonology

• Subsequential: output can be determined deterministically
in one direction

/ `1 `2 `3 ... τ r1 ... rk ... rn /

[ ... τ ′ ... ]

any length bound by k

• (Determinisic 6= no optionality; Heinz in progress)
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Subsequentiality and phonology

• The subsequentiality of phonology is empirically
well-supported (Chandlee and Heinz, 2012; Heinz and Lai, 2013; Payne, 2017; Luo,

2017; Chandlee and Heinz, 2018)

computable functions

RegSubseq

phonology

• Though c.f. Jardine (2016); McCollum et al. (2017)
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Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) =
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Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) = aa
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Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) = aa
lcp({bac, abc}) =

15



Subsequentiality and phonology

• The longest common pre�x (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) = aa
lcp({bac, abc}) = λ

15



Subsequentiality and phonology

• Take a function f

f (tat) = tat
f (tatta) = tatta
f (tadta) = tadda
f (dtd) = ddd
f (tadtta) = taddta

. . .


t → d / d (simul.)
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Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))
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Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = lcp({ f (tad),
f (tada),
f (tadd),
f (tadt),
f (tadaa),
. . . })

17



Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = lcp({ f (tad) = tad,
f (tada) = tada,
f (tadd) = tadd,
f (tadt) = tadd,
f (tadaa) = tadaa,
. . . })

17



Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = lcp({ f (tad) = tad,
f (tada) = tada,
f (tadd) = tadd,
f (tadt) = tadd,
f (tadaa) = tadaa,
. . . })

17



Subsequentiality and phonology
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Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}

f p(tad) = tad
f p(tadt) = lcp({ f (tadt) = tadd,

f (tadta) = tadda,
f (tadtd) = taddd,
f (tadtt) = taddt,
f (tadtaa) = taddaa,
. . . })
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Subsequentiality and phonology

• For f we de�ne
f p(w)

def
= lcp(f (wΣ∗))

• Let Σ = {a, d, t}
f p(tad) = tad
f p(tadt) = tadd
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Subsequentiality and phonology

• f p(w) is the contribution of w to any f (wv)

f (wv) = a b a ... a b a ... b

f p(w)

• f p grows proportionally i� f subsequential...

mp(kækak) = lcp({kækækæ, kakaka,...}))
= k
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Subsequentiality and phonology

• For w ∈ Σ∗, the environment function is

fw(v)
def
= f p(w)−1f (wv)

f (wv) = a b a ... a b a ... b

f p(w) fw(v)

19



Subsequentiality and phonology

• For w ∈ Σ∗, the environment function is

fw(v)
def
= f p(w)−1f (wv)

f (wv) = a b a ... a b a ... b

f p(w) fw(v)

• Ex. ftad(ta) = f p(tad)−1f (tadta)
= (tad)−1tadda
= da
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Subsequentiality and phonology

• For w ∈ Σ∗, the environment function is

fw(v)
def
= f p(w)−1f (wv)

f (wv) = a b a ... a b a ... b

f p(w) fw(v)

• Ex. ftad(ta) = f p(tad)−1f (tadta)
= (tad)−1tadda
= da

ftat(ta) = f p(tat)−1f (tatta)
= (tat)−1tatta
= ta
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Subsequentiality and phonology

• f is subsequential i� it has �nite environment functions

w fw(ta)

a ta
t ta
aa ta
at ta
dt ta
tt ta
aaa ta
... ...

w fw(ta)

d da
ad da
dd da
td da
aad da
add da
... ...
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Subsequentiality and phonology

• f is subsequential i� it has �nite environment functions

w fw(ta)

a ta
t ta
aa ta
... ...

w fw(ta)

d da
ad da
dd da
... ...

fa = ft = ... = faaa = ... = ftatat = ...= fa/t
fd = fad = ... = faad = ... = ftatad = ...= fd
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Subsequentiality and phonology

• Environment functions correspond to states in a
deterministic �nite-state transducer (Mohri, 1997)

• There are procedures for determining environment functions
from positive data (Oncina et al., 1993; Chandlee et al., 2014; Jardine et al., 2014)

• If f ’s environment functions represent k − 1 su�xes, f is
input strictly k-local (ISLk) (Chandlee, 2014; Chandlee and Heinz, 2018)

f → {fa/t, fd}
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Towards a solution



Towards a solution

• M : set of morphemes; Σ: �nite set of segments
• lexicon function UR : M ∗ → Σ∗

phonology function PH : Σ∗ → Σ∗

• Problem: identify UR and PH from a �nite sample of PH ◦ UR
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Towards a solution
• Example:

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

w PH(UR(w))

r1s1 tatta
r1s2 tatda
r1s3 tata

w PH(UR(w))

r2s1 tadda
r2s2 tadda
r2s3 tada

w PH(UR(w))

r3s1 ata
r3s2 ada
r3s3 aa
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Towards a solution

• M : set of morphemes; Σ: �nite set of segments
• lexicon function UR : M ∗ → Σ∗

phonology function PH : Σ∗ → Σ∗

• Problem: identify UR and PH from a �nite sample of PH ◦ UR
• What is the nature of ...

– UR

– PH

– PH ◦ UR ...?
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Towards a solution

• M : set of morphemes; Σ: �nite set of segments
• lexicon function UR : M ∗ → Σ∗

phonology function PH : Σ∗ → Σ∗

• Problem: identify UR and PH from a �nite sample of PH ◦ UR
• The nature of ...

– UR

– PH

– PH ◦ UR ...is subsequential
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Towards a solution

Assumptions:
• UR has one environment function (= UR)

URw(cat)= kæt for any w ∈M ∗;
URw(PL) = z for any w ∈M ∗; etc.
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Towards a solution

Assumptions:
• UR has one environment function (= UR)

URw(cat)= kæt for any w ∈M ∗;
URw(PL) = z for any w ∈M ∗; etc.

• PH is ISL2
• That is, its environment functions are of the form PHσ, σ ∈ Σ

Σ = {t, a, d} → possible env. functions are PHa, PHt, PHd

25



Towards a solution

Strategy:
• Two hypotheses UR′ and PH′

• We modify UR′ so it has one environment function

• We make the opposite change in PH′ to remain consistent
with input data
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The procedure



The procedure

• Running example D ⊂ PH ◦ UR

Sample of PH ◦ UR
w PH(UR(w))

r1s1 tatta
r1s2 tatda
r1s3 tata

w PH(UR(w))

r2s1 tadda
r2s2 tadda
r2s3 tada

w PH(UR(w))

r3s1 ata
r3s2 ada
r3s3 aa
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The procedure

• Initialize PH′ to the identity function

PH′(tad) = tad, PH′(tatta) = tatta, PH′(tadta) = tadta, etc.

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:t

d:d
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The procedure

• Initialize UR′ to a pre�x tree transducer representing D

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa
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The procedure

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s1 r2s3r2s2 r3s3r3s2r3s1

r1

r2

r3

s1

s2

s3 s3

s2

s1 s3

s2

s1
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The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: Dp
λ(r1)

r2

r3

s1

s2

s3 s3

s2

s1 s3

s2

s1
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The procedure

m : Dp
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λ
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r2

r3

s1

s2

s3 s3

s2

s1 s3

s2

s1
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r3
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s3 s3
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s1 s3
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The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
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λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2 : tad

r3

s1 : ta

s2 : da

s3 : a s3 : a

s2 : da

s1 : da s3

s2

s1
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The procedure

m : Dp
w(m)

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1 : tat

r2 : tad

r3 : a

s1 : ta

s2 : da

s3 : a s3 : a

s2 : da

s1 : da s3 : a

s2 : da

s1 : ta
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The procedure

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: tat

r2: tad

r3: a

s1: ta

s2: da

s3: a s3: a

s2: da

s1: da s3: a

s2: da

s1: ta
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The procedure

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: tat

r2: tad

r3: a

s1: ta

s2: da

s3: a s3: a

s2: da

s1: da s3: a

s2: da

s1: ta
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The procedure

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:t

d:d

ws1 env. s1
r1s1 tat ta
r3s1 a ta
r2s1 tad da
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The procedure

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:��t
d

d:d

λ

r2

r2s3r2s2r2s1

r2: tad

s3: a

s2: da

s1:
t
��da
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The procedure

UR′ PH′

λ

r3r2r1

r1s1 r1s2 r1s3 r2s3r2s2r2s1 r3s3r3s2r3s1

r1: tat

r2: tad

r3: a

s1: ta

s2: da

s3: a s3: a

s2: da

s1: ta s3: a

s2: da

s1: ta

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:d

d:d

UR′(r1s1) = tatta PH′(tatta) = tatta
UR′(r2s1) = tadta PH′(tadta) = tadda
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The procedure – summary

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

• Correct UR′ and PH′ from a sample of PH ◦ UR
• This dependent on the

– the subsequentiality of UR and PH

– that UR maps one morpheme to one UR
– that PH is ISL2
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The procedure – summary

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

• A learner based on this procedure can learn ISL2:
• progressive assim./dissim. • deletion
• regressive assim./dissim. • epenthesis

• This includes opacity (self-counterbleeding)
• So far we are limited to single processes
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The procedure – summary

UR

r1 7→ tat s1 7→ ta
r2 7→ tad s2 7→ da
r3 7→ a s3 7→ a

PH

t → d / d

Sample of PH ◦ UR

r1s1 tatta
r1s2 tatda
r1s3 tata

r2s1 tadda
r2s2 tadda
r2s3 tada

r3s1 ata
r3s2 ada
r3s3 aa

• It requires that the UR is recoverable from PH ◦ UR

• What are the constraints on PH? On PH ◦ UR?

36



The procedure – summary

PHt

PHa

PHd

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:d

d:d

• Environment functions PHw must split into change and
elsewhere functions

• Any change PHmakes must be seen at morpheme boundaries
• Formalizing these constraints on PH ◦ UR is work in progress
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Discussion



What is the nature of phonology?

URs
SRs

PH

What is the nature of:
• maps from URs to SRs?
• relation between SRs and URs?
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What is the nature of phonology?

morphemes

URs

SRs

UR

PH

PH

Assuming
• subsequential maps from URs to SRs, and
• a (relatively) concrete relation between SRs and URs

...allows for a procedure for learning URs and a grammar
39



Future work
• Formalizing “relatively concrete”

• Extending to cases in which PH is...

– ISL2
– ISLk for some k
– in any subsequential class with a shared structure (Jardine et al., 2014)

– output-strictly local (Chandlee et al., 2015)

• Extending to...

– featural learning (Heinz and Koirala, 2010; Chandlee et al., 2019)

– optional/gradient processes
(Shibata and Heinz, 2019; Beros and de la Higuera, 2016)
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Appendix: Regressive assimilation

w UR(w) PH ◦ UR(w)

r1s1 tatta tatta
r1s2 tatda tadda
r1s3 tata tata

r2s1 tadda tadda
r2s2 tadta tadta
r2s3 tada tada

r3s1 ata ata
r3s2 ada ada
r3s3 aa aa

PHt

PHa

PHd

t:t

a:ta

d:dd

t:λ
d:d

a:a

a:a
t:λ

d:d

A1



Appendix: Regressive assimilation
w UR(w) PH ◦ UR(w)

r1s1 tatta tatta
r1s2 tatda tadda
r1s3 tata tata

r2s1 tadda tadda
r2s2 tadta tadta
r2s3 tada tada

r3s1 ata ata
r3s2 ada ada
r3s3 aa aa

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: ta

r2:tad

r3: a

s1: tta

s2: dda

s3: ta

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

A2



Appendix: Regressive assimilation

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: ta

r2:tad

r3: a

s1: tta

s2: dda

s3: ta

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

PH′t

PH′a

PH′d

t:t

a:a

d:d

t:t
d:d

a:a

a:a
t:t

d:d

A3



Appendix: Regressive assimilation

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: tat

r2:tad

r3: a

s1: tta

s2: dda

s3: ta

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

PH′t

PH′a

PH′d

t:λ

a:a

d:d

t:λ
d:d

a:a

a:a
t:λ

d:d

A4



Appendix: Regressive assimilation

λ

r1

r2

r3

r1s1

r1s2

r1s3

r2s1

r2s2

r2s3

r3s1

r3s2

r3s3

r1: tat

r2:tad

r3: a

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

s1: ta

s2: da

s3: a

PH′t

PH′a

PH′d

t:t

a:ta

d:dd

t:λ
d:d

a:a

a:a
t:λ

d:d

A5


