A subregular approach to the problem of learning underlying representations

Adam Jardine
Rutgers University

December 9, 2019 • Tel Aviv University

What is the nature of phonology?

What is the nature of:

- constraints on SRs? URs? (Halle, 1959; Prince and Smolensky, 1993; Gorman, 2013)
- maps from URs to SRs?
(Chomsky and Halle, 1968; Johnson, 1972)
- relation between SRs and URs?
(Hyman, 1970; Kiparsky, 1973; Kenstowicz and Kisseberth, 1977)

What is the nature of phonology?

What is the computational nature of (learning)

- constraints on SRs? URs?
(Heinz, 2009, 2010)
- maps from URs to SRs?
- relation between SRs and URs?

Learning URs and a grammar

- Computational restrictions on maps from URs to SRs provide avenue for learning URs and a grammar
- This includes restrictions on relation between SRs and URs

Learning URs and a grammar

- Learning problem: the simultaneous inference of URs and a grammar from SRs in a morphological paradigm
- Today: the subsequential functions provide a structure that can solve this problem
- More specifically, we'll look at input strictly local (ISL) functions
(Chandlee and Heinz, 2018)

Learning URs and a grammar

- This poses further restrictions on the relationship between SRs and URs
- This is joint work with students at Rutgers

- This is very much work in progress!

The learning problem

The learning problem

English plural:

Analysis:

CAT-PL	[kæts]
CUFF-PL	[knfs]
death-PL	[deөs]
GIRL-PL	[gərlz]
CHAIR-PL	[tferz]
BOY-PL	[boiz]
.	...

- A map from morphemes to URs

$$
\begin{aligned}
& \text { CAT } \rightarrow / \mathrm{kæt/} \\
& \mathrm{PL} \rightarrow / \mathrm{z} /
\end{aligned}
$$

- A map from URs to SRs

$$
/ \mathrm{z} / \rightarrow[\mathrm{s}] /[- \text { voi }]
$$

The learning problem

- M : finite set of morphemes
- Σ : finite set of segments
- Learning targets:
- lexicon function UR : $M^{*} \rightarrow \Sigma^{*}$

$\mathrm{UR}(\mathrm{CAT})$	$=\mathrm{k} æ \mathrm{t}$
$\mathrm{UR}(\mathrm{PL})$	$=\mathrm{z}$
$\mathrm{UR}(\mathrm{CAT}-\mathrm{PL})$	$=\mathrm{k} æ t z$

- phonology function PH: $\Sigma^{*} \rightarrow \Sigma^{*}$

The learning problem

- Learning data is a finite sample of PH ○ UR

$w \in M^{*}$	$\mathrm{PH}(\mathrm{UR}(w))$
CAT-PL	kæts
CUFF-PL	kıfs
DEATH-PL	$\mathrm{d} \theta \theta \mathrm{s}$
GIRL-PL	gərlz
CHAIR-PL	tjerz
BOY-PL	boIz

The learning problem

- Problem: identify UR and PH from a finite sample of PH \circ UR
- Questions: What is the nature of ...
- UR
- PH
- PH o UR
- the data sample
...such that learning is possible?

Subsequentiality and phonology

Subsequentiality and phonology

- Johnson (1972); Kaplan and Kay (1994): phonological maps are regular

regular
E.g., directional harmony
/kaki-kæ/ \mapsto [kaki-ka]
$/$ kiki-kæ/ $\mapsto[$ kiki-kæ]

non-regular
E.g., "majority rules" (Baković, 2000)
/kaka-kæ/ \mapsto [kaka-ka]
/kæka-kæ/ $\mapsto[\mathrm{k} æ k æ-k æ]$

Subsequentiality and phonology

- Mohri (1997); Heinz and Lai (2013): Phonological maps are subsequential;
- they are regular, and
- they are deterministic
computable functions

Subsequentiality and phonology

- Subsequential: output can be determined deterministically in one direction

- (Determinisic \neq no optionality; Heinz in progress)

Subsequentiality and phonology

- The subsequentiality of phonology is empirically well-supported (Chandlee and Heinz, 2012; Heinz and Lai, 2013; Payne, 2017; Luo, 2017; Chandlee and Heinz, 2018)

- Though c.f. Jardine (2016); McCollum et al. (2017)

Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial sequence shared by a set of strings

$$
\operatorname{lcp}(\{a a b, a a b a, a a c\})=
$$

Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial sequence shared by a set of strings

$$
\operatorname{lcp}(\{\underline{a a} b, \underline{a a b a}, \underline{a a c}\})=a a
$$

Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial sequence shared by a set of strings

$$
\begin{aligned}
& \operatorname{lcp}(\{\underline{a a b}, \underline{a a b a}, \underline{a a c}\})=a a \\
& \operatorname{lcp}(\{b a c, a b c\})=
\end{aligned}
$$

Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial sequence shared by a set of strings

$$
\begin{aligned}
& \operatorname{lcp}(\{\underline{a a b}, \underline{a a b a}, \underline{a a} c\})=a a \\
& \operatorname{lcp}(\{b a c, a b c\})=\lambda
\end{aligned}
$$

Subsequentiality and phonology

- Take a function f

$$
\left.\begin{array}{ll}
f(t a t) & =\text { tat } \\
f(\text { tatta }) & =\text { tatta } \\
f(\text { tadta }) & =\text { tadda } \\
f(d t d) & =\text { ddd } \\
f(t a d t t a) & =\text { taddta } \\
& \cdots
\end{array}\right\} t \rightarrow d / d-(\text { simul. })
$$

Subsequentiality and phonology

- For f we define

$$
f^{p}(w) \stackrel{\text { def }}{=} \operatorname{lcp}\left(f\left(w \Sigma^{*}\right)\right)
$$

Subsequentiality and phonology

- For f we define

$$
f^{p}(w) \stackrel{\text { def }}{=} \operatorname{lcp}\left(f\left(w \Sigma^{*}\right)\right)
$$

- Let $\Sigma=\{a, d, t\}$

$$
\left.\left.\begin{array}{rl}
f^{p}(t a d)=\operatorname{lcp}(\{ & f(\text { tad }), \\
& f(\text { tada }), \\
& f(\text { tadd }), \\
& f(\text { tadt }), \\
& f(\text { tadaa }), \\
& \cdots
\end{array}\right\}\right)
$$

Subsequentiality and phonology

- For f we define

$$
f^{p}(w) \stackrel{\text { def }}{=} \operatorname{lcp}\left(f\left(w \Sigma^{*}\right)\right)
$$

- Let $\Sigma=\{a, d, t\}$

$$
\begin{aligned}
f^{p}(t a d)=\operatorname{lcp}(\{ & f(\text { tad })=t a d, \\
& f(\text { tada })=t a d a \\
& f(\text { tadd })=t a d d, \\
& f(\text { tad })=t a d d \\
& f(\text { tadaa })=\text { tadaa }
\end{aligned}
$$

Subsequentiality and phonology

- For f we define

$$
f^{p}(w) \stackrel{\text { def }}{=} \operatorname{lcp}\left(f\left(w \Sigma^{*}\right)\right)
$$

- Let $\Sigma=\{a, d, t\}$

$$
\begin{aligned}
f^{p}(t a d)=\operatorname{lcp}(\{ & f(t a d)=\underline{t a d}, \\
& f(t a d a)=\underline{t a d} a \\
& f(t a d d)=\underline{\text { tad }} d \\
& f(t a d t)=\underline{t a d} d \\
& f(\text { tadaa })=\underline{\text { tad }} a a
\end{aligned}
$$

Subsequentiality and phonology

- For f we define

$$
f^{p}(w) \stackrel{\text { def }}{=} \operatorname{lcp}\left(f\left(w \Sigma^{*}\right)\right)
$$

- Let $\Sigma=\{a, d, t\}$

$$
f^{p}(t a d)=t a d
$$

Subsequentiality and phonology

- For f we define

$$
f^{p}(w) \stackrel{\text { def }}{=} \operatorname{lcp}\left(f\left(w \Sigma^{*}\right)\right)
$$

- Let $\Sigma=\{a, d, t\}$

$$
\begin{aligned}
& f^{p}(t a d)=t a d \\
& f^{p}(t a d t)=\operatorname{lcp}(\{ f(t a d t)=t a d d \\
& f(t a d t a)=\underline{t a d d} a \\
& f(t a d t d)=\underline{t a d d} d \\
& f(t a d t t)=\underline{\text { tadd } t} \\
& f(t a d t a a)=\underline{t a d d} a a
\end{aligned}
$$

$$
\ldots \quad\})
$$

Subsequentiality and phonology

- For f we define

$$
f^{p}(w) \stackrel{\text { def }}{=} \operatorname{lcp}\left(f\left(w \Sigma^{*}\right)\right)
$$

- Let $\Sigma=\{a, d, t\}$

$$
\begin{aligned}
f^{p}(t a d) & =t a d \\
f^{p}(t a d t) & =t a d d
\end{aligned}
$$

Subsequentiality and phonology

- $f^{p}(w)$ is the contribution of w to any $f(w v)$

$$
f(w v)=\begin{array}{ll|l|l|l|l|}
\hline a & b & a & \ldots & a & b \\
f^{p}(w) \\
\hline
\end{array}
$$

- f^{p} grows proportionally iff f subsequential...

$$
\begin{aligned}
m^{p}(\mathrm{k} æ \mathrm{kak}) & =\operatorname{lcp}(\{\underline{\mathrm{k}} æ \mathrm{k} æ \mathrm{k} æ, \text { kakaka, } . .\})) \\
& =\mathrm{k}
\end{aligned}
$$

Subsequentiality and phonology

- For $w \in \Sigma^{*}$, the environment function is

$$
\begin{array}{r}
f_{w}(v) \stackrel{\text { def }}{=} f^{p}(w)^{-1} f(w v) \\
f(w v)=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline a & b & a & \ldots & a & b & a & \ldots \\
f^{p}(w) \\
\hline
\end{array}
\end{array}
$$

Subsequentiality and phonology

- For $w \in \Sigma^{*}$, the environment function is

$$
\begin{array}{r}
f_{w}(v) \stackrel{\text { def }}{=} f^{p}(w)^{-1} f(w v) \\
f(w v)=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline a & b & a & \ldots & a & b & a & \ldots \\
f^{p}(w) \\
\hline
\end{array}
\end{array}
$$

- Ex.

$$
\begin{aligned}
f_{t a d}(t a) & =f^{p}(t a d)^{-1} f(t a d t a) \\
& =(t a d)^{-1} \underline{t a d} d a \\
& =d a
\end{aligned}
$$

Subsequentiality and phonology

- For $w \in \Sigma^{*}$, the environment function is

$$
\begin{array}{r}
f_{w}(v) \stackrel{\text { def }}{=} f^{p}(w)^{-1} f(w v) \\
f(w v)=\begin{array}{ll|l|l|l|l|l|l|l}
a & \overbrace{w} \\
\overbrace{w}(v) & b & a & \ldots & a & b & a & \ldots & b \\
f^{p}(w)
\end{array}
\end{array}
$$

- Ex.

$$
\begin{aligned}
f_{t a d}(t a) & =f^{p}(t a d)^{-1} f(t a d t a) \\
& =(t a d)^{-1} t a d d a \\
& =d a \\
f_{t a t}(t a) & =f^{p}(t a t)^{-1} f(t a t t a) \\
& =(t a t)^{-1} \underline{\text { tatta }} \\
& =t a
\end{aligned}
$$

Subsequentiality and phonology

- f is subsequential iff it has finite environment functions

w	$f_{w}(t a)$
a	$t a$
t	$t a$
$a a$	$t a$
$a t$	$t a$
$d t$	$t a$
$t t$	$t a$
$a a a$	$t a$

w	$f_{w}(t a)$
d	$d a$
$a d$	$d a$
$d d$	$d a$
$t d$	$d a$
$a a d$	$d a$
$a d d$	$d a$
\ldots	\cdots

Subsequentiality and phonology

- f is subsequential iff it has finite environment functions

$$
\begin{aligned}
& f_{a}=f_{t}=\ldots=f_{\text {aaa }}=\ldots=f_{\text {tatat }}=\ldots=f_{a / t} \\
& f_{d}=f_{a d}=\ldots=f_{\text {aad }}=\ldots=f_{\text {tatad }}=\ldots=f_{d}
\end{aligned}
$$

Subsequentiality and phonology

- Environment functions correspond to states in a deterministic finite-state transducer
- There are procedures for determining environment functions from positive data (Oncina et al., 1993; Chandlee et al., 2014; Jardine et al., 2014)
- If f^{\prime} s environment functions represent $k-1$ suffixes, f is input strictly k-local ($\mathbf{I S L}_{k}$) (Chandlee, 2014; Chandlee and Heinz, 2018)

$$
f \rightarrow\left\{f_{a / t}, f_{d}\right\}
$$

Towards a solution

Towards a solution

- M: set of morphemes; Σ : finite set of segments
- lexicon function UR: $M^{*} \rightarrow \Sigma^{*}$ phonology function PH: $\Sigma^{*} \rightarrow \Sigma^{*}$
- Problem: identify UR and PH from a finite sample of PH ○ UR

Towards a solution

- Example:

UR		PH	
$\begin{aligned} & r_{1} \mapsto \text { tat } \\ & r_{2} \mapsto \text { tad } \\ & r_{3} \mapsto \mathrm{a} \end{aligned}$	$\begin{aligned} & \mapsto \mathrm{ta} \\ & 1 \mapsto \mathrm{da} \quad \mathrm{t} \\ & 2 \\ & \\ & \mapsto \mathrm{a}\end{aligned}$		
Sample of PH o UR			
$w \quad \operatorname{PH}(\operatorname{UR}(w))$	$w \quad \operatorname{PH}(\mathrm{UR}(w))$	w	$\operatorname{PH}(\mathrm{UR}(w))$
$r_{1} s_{1}$ tatta	$r_{2} s_{1}$ tadda		ata
$r_{1} s_{2}$ tatda	$r_{2} s_{2}$ tadda		
$r_{1} s_{3}$ tata	$r_{2} s_{3}$ tada	$r_{3} s_{3}$	

Towards a solution

- M: set of morphemes; Σ : finite set of segments
- lexicon function UR: $M^{*} \rightarrow \Sigma^{*}$ phonology function PH: $\Sigma^{*} \rightarrow \Sigma^{*}$
- Problem: identify UR and PH from a finite sample of PH ○ UR
- What is the nature of ...
- UR
- PH
- PH ○ UR ...?

Towards a solution

- M: set of morphemes; Σ : finite set of segments
- lexicon function UR: $M^{*} \rightarrow \Sigma^{*}$ phonology function PH: $\Sigma^{*} \rightarrow \Sigma^{*}$
- Problem: identify UR and PH from a finite sample of PH ○ UR
- The nature of ...
- UR
- PH
- PH ○ UR ...is subsequential

Towards a solution

Assumptions:

- UR has one environment function (= UR)

$$
\begin{aligned}
& \mathrm{UR}_{w}(\mathrm{CAT})=\text { kæt for any } w \in M^{*} ; \\
& \mathrm{UR}_{w}(\mathrm{PL})=\mathrm{z} \quad \text { for any } w \in M^{*} ; \text { etc. }
\end{aligned}
$$

Towards a solution

Assumptions:

- UR has one environment function (= UR)

$$
\begin{aligned}
& \mathrm{UR}_{w}(\mathrm{CAT})=\text { kæt for any } w \in M^{*} ; \\
& \mathrm{UR}_{w}(\mathrm{PL})=\mathrm{z} \quad \text { for any } w \in M^{*} ; \text { etc. }
\end{aligned}
$$

- PH is ISL_{2}
- That is, its environment functions are of the form $\mathrm{PH}_{\sigma}, \sigma \in \Sigma$

$$
\Sigma=\{t, a, d\} \rightarrow \text { possible env. functions are } \mathrm{PH}_{a}, \mathrm{PH}_{t}, \mathrm{PH}_{d}
$$

Towards a solution

Strategy:

- Two hypotheses UR' and PH^{\prime}
- We modify UR' so it has one environment function
- We make the opposite change in PH^{\prime} to remain consistent with input data

The procedure

The procedure

- Running example $D \subset$ PH o UR

Sample of PH o UR				
$w \quad \operatorname{PH}(\mathrm{UR}(w))$	w	$\mathrm{PH}(\mathrm{UR}(w))$	w	$\mathrm{PH}(\mathrm{UR}(w))$
$r_{1} s_{1}$ tatta	$r_{2} s_{1}$	tadda	$r_{3} s_{1}$	ata
$r_{1} s_{2}$ tatda	$r_{2} s_{2}$	tadda	$r_{3} s_{2}$	ada
$r_{1} s_{3}$ tata	$r_{2} s_{3}$	tada	$r_{3} s_{3}$	aa

The procedure

- Initialize PH^{\prime} to the identity function

$$
\mathrm{PH}^{\prime}(\operatorname{tad})=\operatorname{tad}, \mathrm{PH}^{\prime}(\text { tatta })=\text { tatta }, \mathrm{PH}^{\prime}(\text { tadta })=\text { tadta, etc. }
$$

The procedure

- Initialize UR' to a prefix tree transducer representing D

$r_{1} s_{1}$ tatta	$r_{2} s_{1}$ tadda	$r_{3} s_{1}$ ata
$r_{1} s_{2}$ tatda	$r_{2} s_{2}$ tadda	$r_{3} s_{2}$ ada
$r_{1} s_{3}$ tata	$r_{2} s_{3}$ tada	$r_{3} s_{3}$ aa

The procedure

$\underline{r_{1} s_{1}}$ tatta	$\underline{r_{2} s_{1}}$ tadda	$\underline{r_{3} s_{1}}$ ata
$\underline{r_{1} s_{2}}$ tatda	$\underline{r_{2} s_{2}}$ tadda	$\underline{r_{3} s_{2}}$ ada
$\underline{r_{1} s_{3}}$ tata	$\underline{r_{2} s_{3}}$ tada	$\underline{r_{3} s_{3}}$ aa

The procedure

$m: D_{w}^{p}(m)$	$r_{1} s_{1}$	tatta	$r_{2} s_{1}$ tadda	$r_{3} s_{1}$ ata
$r_{1} s_{2}$ tatda	$r_{2} s_{2}$ tadda	$r_{3} s_{2}$ ada		
$r_{1} s_{3}$ tata	$r_{2} s_{3}$ tada	$r_{3} s_{3}$ aa		

The procedure

$m: D_{w}^{p}(m)$| s_{1} | $\underline{\text { tatta }}$ | $r_{2} s_{1}$ tadda | $r_{3} s_{1}$ ata |
| :--- | :--- | :--- | :--- |
| $r_{1} s_{2}$ | $\underline{\text { tatda }}$ | $r_{2} s_{2}$ tadda | $r_{3} s_{2}$ ada |
| $r_{1} s_{3}$ tata | $r_{2} s_{3}$ tada | $r_{3} s_{3}$ aa | |

The procedure

$m: D_{w}^{p}(m)$| $r_{1} s_{1}$ | tatta | $r_{2} s_{1}$ | tadda | $r_{3} s_{1}$ ata |
| :--- | :--- | :--- | :--- | :--- |
| $r_{1} s_{2}$ tatda | $r_{2} s_{2}$ tadda | $r_{3} s_{2}$ | ada | |
| $r_{1} s_{3}$ | tata | $r_{2} s_{3}$ | tada | $r_{3} s_{3}$ | aa

The procedure

$m: D_{w}^{p}(m)$| $r_{1} s_{1}$ | tatta | $r_{2} s_{1}$ tadda | $r_{3} s_{1}$ ata |
| :--- | :--- | :--- | :--- |
| $r_{1} s_{2}$ tatda | $r_{2} s_{2}$ tadda | $r_{3} s_{2}$ ada | |
| $r_{1} s_{3}$ tata | $r_{2} s_{3}$ tada | $r_{3} s_{3}$ aa | |

The procedure

$$
m: D_{w}^{p}(m) \quad \begin{array}{lll}
r_{1} s_{1} \text { tatta } & r_{2} s_{1} \text { tadda } & r_{3} s_{1} \text { ata } \\
r_{1} s_{2} \text { tatda } & r_{2} s_{2} \text { tadda } & r_{3} s_{2} \text { ada } \\
r_{1} s_{3} \text { tat } \underline{a} & r_{2} s_{3} \text { tada } & r_{3} s_{3} \text { aa }
\end{array}
$$

The procedure

$m: D_{w}^{p}(m)$	$r_{1} s_{1}$	tatta	$r_{2} s_{1}$	
$r_{1} s_{2}$	tatda	$r_{2} s_{2}$		
$r_{1} s_{3}$	tata $\frac{\text { tad }}{\text { da }} \underline{\text { da }}$	$r_{3} s_{1}$	ata	
$r_{3} s_{3}$	tad	ada		
	$r_{3} s_{3}$	aa		

The procedure

$m: D_{w}^{p}(m)$	$r_{1} s_{1}$ tatta	$r_{2} s_{1}$ tadda	$r_{3} s_{1}$ ata
$r_{1} s_{2}$ tatda	$r_{2} s_{2}$ tadda	$r_{3} s_{2} \underline{\text { ada }}$	
$r_{1} s_{3}$ tata	$r_{2} s_{3}$ tada	$r_{3} s_{3} \underline{\underline{a}} \underline{a}$	

The procedure

| $r_{1} s_{1}$ tatta | $r_{2} s_{1}$ tadda | $r_{3} s_{1}$ ata |
| :--- | :--- | :--- | :--- |
| $r_{1} s_{2}$ tatda | $r_{2} s_{2}$ tadda | $r_{3} s_{2}$ ada |
| $r_{1} s_{3}$ tata | $r_{2} s_{3}$ tada | $r_{3} s_{3}$ aa |

The procedure

| $r_{1} s_{1}$ tatta | $r_{2} s_{1}$ tadda | $r_{3} s_{1}$ ata |
| :--- | :--- | :--- | :--- |
| $r_{1} s_{2}$ tatda | $r_{2} s_{2}$ tadda | $r_{3} s_{2}$ ada |
| $r_{1} s_{3}$ tata | $r_{2} s_{3}$ tada | $r_{3} s_{3}$ aa |

The procedure

The procedure

The procedure

The procedure - summary

UR	PH	Sample of PH o UR		
$r_{1} \mapsto$ tat $s_{1} \mapsto$ ta		$r_{1} s_{1}$ tatta	$r_{2} s_{1}$ tadda	$r_{3} s_{1}$ ata
$r_{2} \mapsto \operatorname{tad} s_{2} \mapsto$ da	$\mathrm{t} \rightarrow \mathrm{d} / \mathrm{d}$	$r_{1} s_{2}$ tatda	$r_{2} s_{2}$ tadda	$r_{3} s_{2}$ ada
$r_{3} \mapsto \mathrm{a} \quad s_{3} \mapsto \mathrm{a}$		$r_{1} s_{3}$ tata	$r_{2} s_{3}$ tada	$r_{3} s_{3}$ aa

- Correct UR^{\prime} and PH^{\prime} from a sample of $\mathrm{PH} \circ \mathrm{UR}$
- This dependent on the
- the subsequentiality of UR and PH
- that UR maps one morpheme to one UR
- that PH is $\mathbf{I S L}_{\mathbf{2}}$

The procedure - summary

UR	PH	Sample of PH o UR		
$r_{1} \mapsto$ tat $s_{1} \mapsto$ ta		$r_{1} s_{1}$ tatta	$r_{2} s_{1}$ tadda	$r_{3} s_{1}$ ata
$r_{2} \mapsto \operatorname{tad} s_{2} \mapsto$ da	$\mathrm{t} \rightarrow \mathrm{d} / \mathrm{d}$	$r_{1} s_{2}$ tatda	$r_{2} s_{2}$ tadda	$r_{3} s_{2}$ ada
$r_{3} \mapsto \mathrm{a} \quad s_{3} \mapsto \mathrm{a}$		$r_{1} s_{3}$ tata	$r_{2} s_{3}$ tada	$r_{3} s_{3}$ aa

- A learner based on this procedure can learn ISL2:
- progressive assim./dissim. • deletion
- regressive assim./dissim. - epenthesis
- This includes opacity (self-counterbleeding)
- So far we are limited to single processes

The procedure - summary

UR	PH	Sample of PH o UR		
$r_{1} \mapsto$ tat $s_{1} \mapsto$ ta		$r_{1} s_{1}$ tatta	$r_{2} s_{1}$ tadda	$r_{3} s_{1}$ ata
$r_{2} \mapsto \operatorname{tad} s_{2} \mapsto$ da	$\mathrm{t} \rightarrow \mathrm{d} / \mathrm{d}$	$r_{1} s_{2}$ tatda	$r_{2} s_{2}$ tadda	$r_{3} s_{2}$ ada
$r_{3} \mapsto \mathrm{a} \quad s_{3} \mapsto \mathrm{a}$		$r_{1} s_{3}$ tata	$r_{2} s_{3}$ tada	$r_{3} s_{3}$ aa

- It requires that the UR is recoverable from PH o UR
- What are the constraints on PH? On PH ○ UR?

The procedure - summary

- Environment functions PH_{w} must split into change and elsewhere functions
- Any change PH makes must be seen at morpheme boundaries
- Formalizing these constraints on PH o UR is work in progress

Discussion

What is the nature of phonology?

What is the nature of:

- maps from URs to SRs?
- relation between SRs and URs?

What is the nature of phonology?

Assuming

- subsequential maps from URs to SRs, and
- a (relatively) concrete relation between SRs and URs ...allows for a procedure for learning URs and a grammar

Future work

- Formalizing "relatively concrete"
- Extending to cases in which PH is...
- ISL_{2}
- ISL k for some k
- in any subsequential class with a shared structure (Jardine et al., 2014)
- output-strictly local
(Chandlee et al., 2015)
- Extending to...
- featural learning
(Heinz and Koirala, 2010; Chandlee et al., 2019)
- optional/gradient processes
(Shibata and Heinz, 2019; Beros and de la Higuera, 2016)

Acknowledgements

Thank you for having me!
...and many thanks to Wenyue Hua and Huteng Dai, attendees of the Rutgers/SBU/Haverford/Delaware subregular phonology workshop, the Rutgers MathLing group, an audience at NECPhon, and in particular Jeff Heinz, Charles Reiss, Bruce Tesar, Adam McCollum, and Colin Wilson for their insightful comments.

Appendix: Regressive assimilation

