A subregular approach to the problem of learning underlying representations

Adam Jardine Rutgers University

December 9, 2019 · Tel Aviv University

What is the nature of phonology?

What is the nature of:

- constraints on SRs? URs? (Halle, 1959; Prince and Smolensky, 1993; Gorman, 2013)
- maps from URs to SRs?
 (Chomsky and Halle, 1968; Johnson, 1972)
- relation between SRs and URs?

(Hyman, 1970; Kiparsky, 1973; Kenstowicz and Kisseberth, 1977)

What is the nature of phonology?

What is the computational nature of (learning)

• constraints on SRs? URs?

maps from URs to SRs?

(Heinz, 2009, 2010) (Jardine et al., 2014; Chandlee and Heinz, 2018)

• relation between SRs and URs?

Learning URs and a grammar

- Computational restrictions on maps from URs to SRs provide avenue for learning URs and a grammar
- $\cdot\,$ This includes restrictions on relation between SRs and URs

Learning URs and a grammar

- **Learning problem:** the **simultaneous inference** of URs and a grammar from SRs in a morphological paradigm (Tesar, 2014; Cotterell et al., 2015; Rasin et al., 2018)
- **Today:** the **subsequential** functions provide a structure that can solve this problem

(Mohri, 1997; Heinz and Lai, 2013; Jardine et al., 2014)

 More specifically, we'll look at input strictly local (ISL) functions (Chandlee and Heinz, 2018)

Learning URs and a grammar

- This poses further restrictions on the relationship between SRs and URs
- \cdot This is joint work with students at Rutgers

Wenyue Hua

Huteng Dai

• This is very much work in progress!

English plural:

CAT-PL	[kæt <mark>s</mark>]
cuff-PL	$[k\Lambda fs]$
death-PL	$[d\epsilon\theta s]$
girl-PL	[gərlz]
chair-PL	[t∫erz]
boy-PL	$[b_{21Z}]$
	•••

Analysis:

• A **map** from morphemes to URs

• A **map** from URs to SRs

$$/z/ \rightarrow [s] / [-voi]$$

- M: finite set of morphemes
- Σ : finite set of segments
- Learning targets:
 - lexicon function $\operatorname{UR}:M^*\to\Sigma^*$

{CAT, DOG, ..., PL} {a, b, β, ..., z}

UR(CAT) = katUR(PL) = zUR(CAT-PL) = katz

. . .

. . .

. . .

. . .

– phonology function $\operatorname{PH}: \Sigma^* \to \Sigma^*$

 \cdot Learning data is a finite sample of PH \circ UR

$w \in M^*$	$\operatorname{PH}(\operatorname{UR}(w))$
CAT-PL	kæt <mark>s</mark>
cuff-PL	kAf <mark>s</mark>
death-PL	$d\epsilon\theta_s$
girl-PL	gərlz
chair-PL	t∫erz
boy-PL	DDIZ

- **Problem:** identify UR and PH from a finite sample of PH UR
- **Questions:** What is the nature of ...
 - UR
 - PH
 - $PH \circ UR$
 - the data sample

...such that learning is possible?

 $/kiki-kæ/ \mapsto [kiki-kæ]$

 Johnson (1972); Kaplan and Kay (1994): phonological maps are regular

 $/kaka-ka/ \mapsto [kaka-ka]$ $/kaka-ka/ \mapsto [kaka-ka]$

- Mohri (1997); Heinz and Lai (2013): Phonological maps are subsequential;
 - they are regular, **and**
 - they are **deterministic**

• **Subsequential:** output can be determined deterministically in one direction

• (Determinisic \neq no optionality; Heinz in progress)

• The subsequentiality of phonology is empirically well-supported (Chandlee and Heinz, 2012; Heinz and Lai, 2013; Payne, 2017; Luo, 2017; Chandlee and Heinz, 2018)

• Though c.f. Jardine (2016); McCollum et al. (2017)

• The **longest common prefix (lcp)** is the longest initial sequence shared by a set of strings

 $\texttt{lcp}(\{aab, aaba, aac\}) =$

• The **longest common prefix (lcp)** is the longest initial sequence shared by a set of strings

 $\operatorname{lcp}(\{\underline{aa}b,\underline{aa}ba,\underline{aa}c\})=\underline{aa}$

• The **longest common prefix (lcp)** is the longest initial sequence shared by a set of strings

$$\begin{split} & \log(\{\underline{aa}b,\underline{aa}ba,\underline{aa}c\}) = \underline{aa} \\ & \log(\{bac,abc\}) = \end{split}$$

• The **longest common prefix (lcp)** is the longest initial sequence shared by a set of strings

$$\begin{split} & \log(\{\underline{aa}b,\underline{aa}ba,\underline{aa}c\}) = \underline{aa} \\ & \log(\{bac,abc\}) = \lambda \end{split}$$

• Take a function f

$$\begin{cases} f(tat) &= tat \\ f(tatta) &= tatta \\ f(tadta) &= tadda \\ f(dtd) &= ddd \\ f(tadtta) &= taddta \\ \dots \end{cases} \end{cases} t \rightarrow d / d _ (simul.)$$

• For f we define

 $f^p(w) \stackrel{\mathrm{def}}{=} \mathrm{lcp}(f(w\Sigma^*))$

• For f we define

$$f^p(w) \stackrel{\mathrm{def}}{=} \mathrm{lcp}(f(w\Sigma^*))$$

• Let $\Sigma = \{a, d, t\}$

$$\begin{split} f^p(tad) = & \texttt{lcp}(\{ \begin{array}{l} f(tad), \\ f(tada), \\ f(tadd), \\ f(tadt), \\ f(tadaa), \\ \dots \end{array} \}) \end{split}$$

• For f we define

$$f^p(w) \stackrel{\mathrm{def}}{=} \mathrm{lcp}(f(w\Sigma^*))$$

• Let
$$\Sigma = \{a, d, t\}$$

$$\begin{split} f^p(tad) = \texttt{lcp}(\{ f(tad) = tad, \\ f(tada) = tada, \\ f(tadd) = tadd, \\ f(tadt) = tadd, \\ f(tadaa) = tadaa, \\ \dots \\ \} \end{split}$$

• For f we define

$$f^p(w) \stackrel{\mathrm{def}}{=} \mathrm{lcp}(f(w\Sigma^*))$$

• Let
$$\Sigma = \{a, d, t\}$$

$$\begin{aligned} f^p(tad) &= \texttt{lcp}(\{ f(tad) = \underline{tad}, \\ f(tada) &= \underline{tad}a, \\ f(tadd) &= \underline{tad}a, \\ f(tadt) &= \underline{tad}d, \\ f(tadaa) &= \underline{tad}aa, \\ \dots & \} \end{aligned}$$

• For f we define

 $f^p(w) \stackrel{\mathrm{def}}{=} \mathrm{lcp}(f(w\Sigma^*))$

• Let
$$\Sigma = \{a, d, t\}$$

$$f^p(tad) = tad$$

• For f we define

 $f^p(w) \stackrel{\mathrm{def}}{=} \mathrm{lcp}(f(w\Sigma^*))$

• Let
$$\Sigma = \{a, d, t\}$$

$$\begin{aligned} f^p(tad) &= tad \\ f^p(tadt) &= \texttt{lcp}(\{ f(tadt) = \underline{tadd}, \\ f(tadta) &= \underline{tadd}a, \\ f(tadtd) &= \underline{tadd}a, \\ f(tadtt) &= \underline{tadd}d, \\ f(tadtta) &= \underline{tadd}aa, \\ \dots & \end{aligned}$$

17

• For f we define

 $f^p(w) \stackrel{\mathrm{def}}{=} \mathrm{lcp}(f(w\Sigma^*))$

• Let
$$\Sigma = \{a, d, t\}$$

 $\begin{array}{l} f^p(tad) = tad \\ f^p(tadt) = tadd \end{array}$

• $f^{p}(w)$ is the **contribution** of w to any f(wv)

$$f(wv) = \overbrace{a \ b \ a}^{f^p(w)} \dots \overbrace{a \ b \ a}^{d \ b \ a} \dots \overbrace{b}^{d \ b \ a}$$

• f^p grows proportionally iff f subsequential...

• For $w \in \Sigma^*$, the **environment function** is

$$f_w(v) \stackrel{\text{def}}{=} f^p(w)^{-1} f(wv)$$

$$f(wv) = \overbrace{a \ b \ a}^{f^{p}(w)} \underbrace{\begin{array}{ccc} f^{p}(w) \\ \hline f(wv) \end{array}}_{m \ w} \underbrace{\begin{array}{cccc} f^{p}(w) \end{array}}_{m \ w} \underbrace{\begin{array}{cccc} f^{p}(w) \\ \hline f(wv) \end{array}}_{m \ w} \underbrace{\begin{array}{cccc} f^{p}(w) \end{array}}_{m \ w} \underbrace{\begin{array}{ccccc} f^{p}(w) \end{array}}_{m \ w} \underbrace{$$

• For $w \in \Sigma^*$, the **environment function** is

$$f_w(v) \stackrel{\text{def}}{=} f^p(w)^{-1} f(wv)$$

$$f(wv) = \overbrace{a \ b \ a}^{f^{p}(w)} \ldots \overbrace{a \ b}^{f_{w}(v)} \overbrace{a \ \dots \ b}^{f_{w}(v)}$$

• Ex.
$$f_{tad}(ta) = f^p(tad)^{-1}f(tadta)$$
$$= (tad)^{-1}\underline{tad}da$$
$$= da$$

19

• For $w \in \Sigma^*$, the **environment function** is

 $f_w(v) \stackrel{\text{def}}{=} f^p(w)^{-1} f(wv)$ $f(wv) = \overbrace{a \ b \ a \ \dots \ a \ b \ a \ \dots \ b}^{f^p(w)} f(wv)$

• Ex.

$$\begin{aligned} f_{tad}(ta) &= f^p(tad)^{-1} f(tadta) \\ &= (tad)^{-1} tadda \\ &= da \\ f_{tat}(ta) &= f^p(tat)^{-1} f(tatta) \\ &= (tat)^{-1} \underline{tat} ta \\ &= \underline{ta} \end{aligned}$$

19

 \cdot f is subsequential **iff it has finite environment functions**

w	$f_w(ta)$	w	$f_w(ta)$	
a	ta	\overline{d}	da	
t	ta	ad	da	
aa	ta	dd	da	
at	ta	td	da	
dt	ta	aad	da	
tt	ta	add	da	
aaa	ta		•••	
•••	•••			

 \cdot f is subsequential **iff it has finite environment functions**

w	$f_w(ta)$	w	$f_w(ta)$
a	ta	\overline{d}	da
t	ta	ad	da
aa	ta	dd	da
•••	•••	• • •	• • •

$$f_a = f_t = \dots = f_{aaa} = \dots = f_{tatat} = \dots = f_{a/t}$$

 $f_d = f_{ad} = \dots = f_{aad} = \dots = f_{tatad} = \dots = f_d$

20

- Environment functions correspond to states in a deterministic finite-state transducer (Mohri, 1997)
- There are procedures for determining environment functions from positive data (Oncina et al., 1993; Chandlee et al., 2014; Jardine et al., 2014)
- If f's environment functions represent k 1 suffixes, f is input strictly k-local (ISL_k) (Chandlee, 2014; Chandlee and Heinz, 2018)

 $f \to \{f_{a/t}, f_d\}$

Towards a solution
- *M*: set of morphemes; Σ : finite set of segments
- lexicon function $UR: M^* \to \Sigma^*$ phonology function $PH: \Sigma^* \to \Sigma^*$
- **Problem:** identify UR and PH from a finite sample of PH \circ UR

• Example:

UR	PH
$r_1 \mapsto \text{tat} s_1 \mapsto \text{ta}$	
$r_2 \mapsto \operatorname{tad} s_2 \mapsto \operatorname{da}$	t \rightarrow d / d
$r_3 \mapsto a s_3 \mapsto a$	

	Sample of PH \circ UR				
w	$\operatorname{PH}(\operatorname{UR}(w))$	w	$\mathtt{PH}(\mathtt{UR}(w))$	w	$\mathtt{PH}(\mathtt{UR}(w))$
r_1s_1 r_1s_2 r_1s_3	tatta tatda tata	$r_2 s_1 \ r_2 s_2 \ r_2 s_3$	tadda tadda tada	$r_{3}s_{1} \ r_{3}s_{2} \ r_{3}s_{3}$	ata ada aa

- *M*: set of morphemes; Σ : finite set of segments
- $\begin{array}{ll} \bullet \mbox{ lexicon function } & {\rm UR}: M^* \to \Sigma^* \\ \mbox{ phonology function } & {\rm PH}: \Sigma^* \to \Sigma^* \end{array}$
- **Problem:** identify UR and PH from a finite sample of PH \circ UR
- What is the nature of ...
 - UR
 - PH
 - PH UR ...?

- *M*: set of morphemes; Σ : finite set of segments
- lexicon function $\operatorname{UR}: M^* \to \Sigma^*$ phonology function $\operatorname{PH}: \Sigma^* \to \Sigma^*$
- **Problem:** identify UR and PH from a finite sample of PH \circ UR
- The nature of ...
 - UR
 - PH
 - PH o UR ... is subsequential

Assumptions:

 \cdot UR has one environment function (= UR)

$$UR_w(CAT) = kat \text{ for any } w \in M^*;$$

 $UR_w(PL) = z \text{ for any } w \in M^*; \text{ etc.}$

Assumptions:

· UR has one environment function (= UR)

 $\begin{array}{lll} \mathrm{UR}_w(\mathrm{CAT}) = & \mathrm{kæt} & \mathrm{for \ any} \ w \in M^*; \\ \mathrm{UR}_w(\mathrm{PL}) = & \mathrm{z} & & \mathrm{for \ any} \ w \in M^*; \end{array} \text{ etc.} \end{array}$

- PH is ISL_2
- That is, its environment functions are of the form $\mathtt{PH}_{\sigma}\text{, }\sigma\in\Sigma$

 $\Sigma = \{t, a, d\} \rightarrow \text{ possible env. functions are } PH_a, PH_t, PH_d$

Strategy:

- \cdot Two hypotheses \mathtt{UR}' and \mathtt{PH}'
- We modify UR' so it has one environment function
- We make the *opposite* change in PH' to remain consistent with input data

• Running example $D \subset \mathtt{PH} \circ \mathtt{UR}$

	Sample of PH \circ UR				
w	$\mathtt{PH}(\mathtt{UR}(w))$	w	$\mathtt{PH}(\mathtt{UR}(w))$	w	$\operatorname{PH}(\operatorname{UR}(w))$
r_1s_1 r_1s_2 r_1s_3	tatta tatda tata	$r_2 s_1 \ r_2 s_2 \ r_2 s_3$	tadda tadda tada	$r_{3}s_{1} \ r_{3}s_{2} \ r_{3}s_{3}$	ata ada aa

• Initialize PH' to the identity function

PH'(tad) = tad, PH'(tatta) = tatta, PH'(tadta) = tadta, etc.

• Initialize UR' to a **prefix tree transducer** representing D

$r_{1}s_{1}$	tatta	$r_{2}s_{1}$	tadda	$r_{3}s_{1}$	ata
$r_{1}s_{2}$	tatda	r_2s_2	tadda	r_3s_2	ada
$r_{1}s_{3}$	tata	$r_{2}s_{3}$	tada	r_3s_3	aa

$r_{1}s_{1}$	tatta	$r_{2}s_{1}$	tadda	$r_{3}s_{1}$	ata
$r_{1}s_{2}$	tatda	r_2s_2	tadda	r_3s_2	ada
$r_{1}s_{3}$	tata	$r_2 s_3$	tada	$r_{3}s_{3}$	aa

ws_1	env.	s_1
$r_{1}s_{1}$	tat	ta
$r_{3}s_{1}$	a	ta
$r_{2}s_{1}$	tad	da

UR	РН	Sample of PH \circ UR
$ \begin{array}{c} r_1 \mapsto \text{tat} s_1 \mapsto \text{ta} \\ r_2 \mapsto \text{tad} s_2 \mapsto \text{da} \\ r_3 \mapsto \text{a} s_3 \mapsto \text{a} \end{array} $	t \rightarrow d / d	r_1s_1 tatta r_2s_1 tadda r_3s_1 ata r_1s_2 tatda r_2s_2 tadda r_3s_2 ada r_1s_3 tata r_2s_3 tada r_3s_3 aa

- Correct UR' and PH' from a sample of $\mathtt{PH} \circ \mathtt{UR}$
- \cdot This dependent on the
 - the **subsequentiality** of UR and PH
 - that UR maps one morpheme to one UR
 - that PH is $\ensuremath{\mathsf{ISL}}_2$

UR	PH	Sample of $\mathtt{PH} \circ \mathtt{UR}$
$ \begin{array}{c} r_1 \mapsto \text{tat} s_1 \mapsto \text{ta} \\ r_2 \mapsto \text{tad} s_2 \mapsto \text{da} \\ r_3 \mapsto \text{a} s_3 \mapsto \text{a} \end{array} $	t \rightarrow d / d	r_1s_1 tatta r_2s_1 tadda r_3s_1 ata r_1s_2 tatda r_2s_2 tadda r_3s_2 ada r_1s_3 tata r_2s_3 tada r_3s_3 aa

- A learner based on this procedure can learn ISL₂:
 - progressive assim./dissim.
 deletion
 - regressive assim./dissim.
 epenthesis
- This includes opacity (self-counterbleeding)
- \cdot So far we are limited to single processes

UR	РН	Sample of $PH \circ UR$
$r_1 \mapsto \text{tat} s_1 \mapsto \text{ta}$ $r_2 \mapsto \text{tad} s_2 \mapsto \text{da}$	t \rightarrow d / d	r_1s_1 tatta r_2s_1 tadda r_3s_1 ata r_1s_2 tatda r_2s_2 tadda r_3s_2 ada
$r_3 \mapsto a s_3 \mapsto a$		r_1s_3 tata r_2s_3 tada r_3s_3 aa

• It requires that the UR is **recoverable** from PH \circ UR

• What are the constraints on PH? On PH \circ UR?

- Environment functions PH_w must split into change and elsewhere functions
- Any change PH makes must be seen at morpheme boundaries
- Formalizing these constraints on PH o UR is work in progress

Discussion

What is the nature of phonology?

What is the nature of:

- maps from URs to SRs?
- relation between SRs and URs?

What is the nature of phonology?

Assuming

- **subsequential** maps from URs to SRs, and
- \cdot a (relatively) **concrete** relation between SRs and URs
- ...allows for a procedure for learning URs and a grammar

Future work

- Formalizing "relatively concrete"
- Extending to cases in which PH is...
 - ISL_2
 - ISL_k for some k
 - in any subsequential class with a shared structure (Jardine et al., 2014)
 - output-strictly local (Chandlee et al., 2015)
- Extending to...
 - featural learning (Heinz and Koirala, 2010; Chandlee et al., 2019)
 - optional/gradient processes

(Shibata and Heinz, 2019; Beros and de la Higuera, 2016)

Acknowledgements

Thank you for having me!

...and many thanks to **Wenyue Hua** and **Huteng Dai**, attendees of the Rutgers/SBU/Haverford/Delaware subregular phonology workshop, **the Rutgers MathLing group**, an audience at NECPhon, and in particular **Jeff Heinz**, **Charles Reiss**, **Bruce Tesar**, **Adam McCollum**, and **Colin Wilson** for their insightful comments.

Appendix: Regressive assimilation

w	${\tt UR}(w)$	$\mathtt{PH} \circ \mathtt{UR}(w)$	
r_1s_1 r_1s_2	tatta tatda	tatta tadda	arta PH ara
r_1s_3	tata	tata	
$r_2 s_1 \ r_2 s_2 \ r_2 s_3$	tadda tadta tada	tadda tadta tada	t:t PH_t t: λ d:d a:a
r_3s_1 r_3s_2	ata ada	ata ada	$d:dd \qquad PH_d \qquad d:d$
7383	aa	aa	

, , b b			
w	$\operatorname{UR}(w)$	$\mathtt{PH} \circ \mathtt{UR}(w)$	s_1 : tta r_1s_2
$r_1s_1\\r_1s_2\\r_1s_3$	tatta tatda tata	tatta <mark>tadda</mark> tata	r_1 : ta r_1 s_2 : ddd r_1 r_1 r_2 r_3 r_2 r_2 r_3 r_2 r_3 r_2 r_3 r_3 r_2 r_3 r
$r_2 s_1 \ r_2 s_2 \ r_2 s_3$	tadda tadta tada	tadda tadta tada	$ \xrightarrow{\lambda} \xrightarrow{r_2: tad} r_2: tad$
$r_{3}s_{1} \ r_{3}s_{2} \ r_{3}s_{3}$	ata ada aa	ata ada aa	r_3 : a s_1 : ta r_3s_2 r_3 s_2 : da r_3s_2 s_3 : a r_3s_2

Appendix: Regressive assimilation

Appendix: Regressive assimilation

А3
Appendix: Regressive assimilation

Α4

Appendix: Regressive assimilation

A5