A subregular approach to the
problem of learning underlying
representations

Adam Jardine
Rutgers University

December 9, 2019 - Tel Aviv University



What is the nature of phonology?

PH

What is the nature of:
- constraints on SRs? URs?  (Halle, 1959; Prince and Smolensky, 1993; Gorman, 2013)
- maps from URs to SRs? (Chomsky and Halle, 1968; Johnson, 1972)

- relation between SRs and URs?
(Hyman, 1970; Kiparsky, 1973; Kenstowicz and Kisseberth, 1977)



What is the nature of phonology?

PH

What is the computational nature of (learning)
- constraints on SRs? (Heinz, 2009, 2010)
- maps from URs to SRs? (Jardine et al,, 2014; Chandlee and Heinz, 2018)



Learning URs and a grammar

morphemes

- Computational restrictions on maps from URs to SRs provide avenue for
learning URs and a grammar

- This includes restrictions on relation between SRs and URs



Learning URs and a grammar

- Learning problem: the simultaneous inference of URs and a
grammar from SRs in a morphological paradigm
(Tesar, 2014; Cotterell et al,, 2015; Rasin et al,, 2018)

- Today: the subsequential functions provide a structure that
can solve this problem
(Mohri, 1997: Heinz and Lai, 2013; Jardine et al,, 2014)

- More specifically, we'll look at input strictly local (I1SL)
functions (Chandlee and Heinz, 2018)



Learning URs and a grammar

- This poses further restrictions on the relationship between
SRs and URs

- This is joint work with students at Rutgers

Wenyue Hua Huteng Dal

- This 1s very much work in progress!



The learning problem



The learning problem

English plural:

Analysis:
- A map from morphemes to URs

CAT-PL  |kaots]
CUFF-PL  [kafs]
DEATH-PL [debs]
GIRL-PL  [gorl/]
CHAIR-PL [tfer]
BOY-PL  [borz]

CAT — /keet/
PL — /z/

- A map from URs to SRs

Jz] — [8] | [—vol]




The learning problem
- M: finite set of morphemes

- 2 finite set of segments
- Learning targets:
- lexicon function UR: M* — ¥*

- phonology function PH: X* — >*

{CAT, DOG, .., PL}

{a, b, b, ..., z}

UR(CAT) = keet
UR(PL) = 7
UR(CAT-PL) = keetz

PH(keet) = keet

dogz
keets
PH(bnikz) = bniks

)
. 0
TN TN TN N
z &
)
N N
[



The learning problem

- Learning data Is a finite sample of PH o UR

w e M*  PH(UR(w))
CAT-PL keet
CUFF-PL  kaf
DEATH-PL deb
GIRL-PL gorl
CHAIR-PL  tfer
BOY-PL bot




The learning problem

- Problem: identify UR and PH from a finite sample of PHo UR

- Questions: What is the nature of ...
- UR
- PH
- PHo UR
- the data sample

..such that learning is possible?

10



Subsequentiality and
phonology



Subsequentiality and phonology
- Johnson (1972); Kaplan and Kay (1994): phonological maps are

regular
>
@)
=
Q
=
length of w
regular

E.g., directional harmony
/kaki-kee/ — [kaki-ka
Jkiki-kee/ — [kiki-ker]

memory

length of w

non-regular

E.g., “majority rules” (akovi¢, 2000)
[kaka-ka/ +— [kaka-ka]
[kacka-kae ) > [keekeo-kao]

11



Subsequentiality and phonology

- Mohri (1997); Heinz and Lai (2013): Phonological maps are
subsequential;

- they are regular, and
- they are deterministic

computable functions

-

12



Subsequentiality and phonology

- Subsequential: output can be determined deterministically
in one direction

any length bound by k
/ 51 62 63 e | T [T e [ TE| ... | Ty /

- (Determinisic # no optionality; Heinz in progress)

13



Subsequentiality and phonology

- The subsequentiality of phonology is empirically
Well—supported (Chandlee and Heinz, 2012; Heinz and Lai, 2013; Payne, 2017; Luo,
2017; Chandlee and Heinz, 2018)

computable functions

phonology

- Though cf. Jardine (2016); McCollum et al. (2017)
14



Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) =

15



Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aact) = aa

15



Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aact) = aa
lcp({bac, abc}) =

15



Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aact) = aa
lcp({bac, abc}) = A

15



Subsequentiality and phonology

- Take a function f

tat
tatta
tadda
ddd
taddta

\

> t — d/d__(simul.)

/

16



Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

17



Subsequentiality and phonology

- For f we define
def

fP(w) = Tep(f(wi))
- Let X ={a,d, t}

f(tad) = 1cp({

17



Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
fP(tad) = Lcp({ f(tad) = tad,
f(tada) = tada,
f(tadd) = tadd,
f(tadt) = tadd,
f(tadaa) = tadaa,

})

17



Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
ff(tad) = lep(q f(tad) = tad,
f(tada) = tada,
f(tadd) = tadd,
f(tadt) = tadd,
f(tadaa) = tadaa,

})

17



Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
fP(tad) = tad

17



Subsequentiality and phonology

- For f we define
def

fPw) = Tep(f(wX’))

- Let ¥ = {a,d, t}

fP(tad) = tad
fP(tadt) = 1cp({ f(tadt) = tadd,
f(tadta) = tadda,
f(tadtd) = taddd,
f(tadtt) = taddt,
f (tadtaa) = taddaa,

1)

17



Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
fP(tad) = tad
fP(tadt) = tadd

17



Subsequentiality and phonology

- fP(w) is the contribution of w to any f(wv)

fr(w)

A

flwv)= la |b |a |..la|b |a]|..|b

- fP grows proportionally iff f subsequential...

m? (kaekak) = 1cp({kerkerkee, kakaka,...}))
— k

18



Subsequentiality and phonology

- For w € X%, the environment function is

def

fulv) = fP(w) ™ f(wv)

fr(w) Ju(v)

A A

flwv)=la |b |a  ..|a |b|a ..




Subsequentiality and phonology

- For w € X%, the environment function is

- Ex.

f(wv)

def

fu(v) = fP(w)™" flwo)
7w il
—la|b|la | ..la|b|a]..

fraa(ta) = f2(tad)" f(tadta)

= (tad) 'tadda
= da

19



Subsequentiality and phonology

- For w € ¥*, the environment function is
def

fulv) = fr(w) ™ flwv)
f(w) ful®)

A A

flwv)= la |b |a|..|a|b |a|..

+ EX fraa(ta) = fP(tad)" ! f(tadta)
= (tad) 'tadda
= da
frat(ta) = fP(tat)" ! f(tatta)
= (tat) tatta
= ta




Subsequentiality and phonology

- f is subsequential iff it has finite environment functions

w  fu(ta) w  fu(ta)
ta d da

t ta ad da

aa  ta dd da

at  ta td da

dt ta aad da

tt ta add da

aaa ta



Subsequentiality and phonology

- fis subsequential iff it has finite environment functions

w  f(ta) w  fu(ta)
ta d da

t ta ad da

aa ta dd da

fa — ft — e T faaa — e = ftatat — e fa/t
fd — fad — e T faad — e T ftatad — e fd

20



Subsequentiality and phonology

- Environment functions correspond to states in a
deterministic finite-state transducer (Mohri, 1997)

- There are procedures for determining environment functions
from positive data (Oncina et al, 1993: Chandlee et al., 2014 Jardine et al, 2014)

- If f's environment functions represent k — 1 suffixes, f is
input strictly .-local (ISL;) (Chandlee, 2014 Chandlee and Heinz, 2018)

f — {fa/l‘n fd}

21



Towards a solution



Towards a solution

- M: set of morphemes; >: finite set of segments

- lexicon function UR: M* — X~
phonology function PH: X* — X*

- Problem: identify UR and PH from a finite sample of PH o UR

22



Towards a solution
- Example:

UR PH
ry — tat sy — ta
ro > tad ss—>da  t — d/d__
T3 — a S3 — a

Sample of PH o UR

w  PH(UR(w)) w  PH(UR(w)) w  PH(UR(w))

r1s; tatta ros1 tadda r3s; ata
r1So tatda roSe tadda r3S9 ada
r1S3 tata oS3 tada r3S3 aa




Towards a solution

- M: set of morphemes; >: finite set of segments

- lexicon function UR: M* — X~
phonology function PH: X* — X*

- Problem: identify UR and PH from a finite sample of PH o UR
- What Is the nature of ...

- UR

- PH

— PH o UR e

24



Towards a solution

- M: set of morphemes; >: finite set of segments

- lexicon function UR: M* — X~
phonology function PH: X* — X*

- Problem: identify UR and PH from a finite sample of PH o UR
- The nature of ...

- UR

- PH

- PHoUR  ..is subsequential

24



Towards a solution

Assumptions:
- UR has one environment function (= UR)

UR,(CAT)= ket for any w € M*;
UR,(PL) = z foranyw e M*, etc.

25



Towards a solution

Assumptions:
- UR has one environment function (= UR)

UR,(CAT)= ket for any w € M*;
UR,(PL) = z foranyw e M*, etc.

- PH IS ISLs
- That is, I1ts environment functions are of the form PH,, o0 € 2

>, ={t,a,d} — possible env. functions are PH,, PH;, PH,

25



Towards a solution

Strategy:
- Two hypotheses UR' and PH’

- We modify UR’ so it has one environment function

- We make the opposite change in PH' to remain consistent
with input data

26



The procedure



The procedure

- Running example D C PHo UR

Sample of PH o UR

w  PH(UR(w)) w PH(UR(w)) w  PH(UR(w))
ris1 tatta ros1 tadda rss1 ata
ri1So tatda roSo tadda reSe ada
r1S3 tata ros3 tada r3S3 aa

27



The procedure

- Initialize PH' to the identity function

PH'(tad) = tad, PH'(tatta) = tatta, PH'(tadta) = tadta, etc.

23



The procedure

- Initialize UR’ to a prefix tree transducer representing D

ri1s1 tatta ros; tadda rss; ata
r1So tatda ros, tadda rssy ada
r1s3 tata 19s3 tada 1r3s3 aa

29



The procedure

ri1s1 tatta ros; tadda rss; ata
r5o tatda ros, tadda r3sy ada
ri153 tata  ross tada  r3s; aa

r3

ooy

) @EE) @@@

30



The procedure

ri181 tatta mrosy; tadda rssy ata
m: DP(m) sy tatda resy tadda r3sy ada
r1S83 tata  rgss3 tada  rgss aa

r3

51 S3 S1 S3 S1 53

30



The procedure

ri181 tatta mrosy; tadda rssy ata
m : DP(m) rise tatda rysy tadda 1359 ada
r1S83 tata  rgs3 tada  rgss aa

r3

51 S3 S1 S3 S1 53

30



The procedure

ri1s1 tatta ros; tadda rssy ata
m : DP(m) rsy tatda rosy tadda r3sy ada
r1S3 tata 1ros3 tada  r3ss aa

r3

30



The procedure

r1s1 tatta ros; tadda rssy ata
m : DP(m) rsy tatda rysy tadda r3sy ada
r1S3 tata 1rys3 tada  r3ss aa

r3

s1 . ta S3 S1 53 S1 S3

30



The procedure

ri1S81 tatta ros; tadda rssy ata
m : DP(m) rs, tatda mosy tadda r3sy ada
r1s3 tata  ross tada  rgss aa

r3

30



The procedure

ris; tatta ros; tadda riys; ata
m : DP(m) risy tatda 7195y tadda r3s9 ada
ri1S3 tata ross tada  r3ss aa

s1 @ ta s3ia g :da S3:a 51 3

S9 1da

) @EE EEIE)

30



The procedure

m : DP(m)

ri1s1 tatta ros; tadda 135
r1So tatda ros, tadda 1s3so

1S53 tata

253 tada

3583

|0

| |20 ®
ERE

30



The procedure

r1Ss; tatta ros; tadda rss; ata
r1So tatda ros, tadda rssy ada
ri1S3 tata ross tada  rssy aa

30



The procedure

151 tatta 251 tadda 351 ata
r1So tatda ros, tadda rssy ada
ri1S3 tata ross tada  rssy aa

30



The procedure

wsy env. sy

r1S1 tt
351 a t
251 d d

31



The procedure

ro: tad
t

So:[da

32



The procedure

UR/ PH'

T3. Q&
ri: tat 3

ro: tad

s1: ta S3. a s1: ta S3. a s1: ta S3. a

@OE @HOE @EE

UR/(r1s1) = tatta PH'(tatta) = tatta
UR/(ry51) = tadta PH'(tadta) = tadda

33



The procedure - summary

UR PH Sample of PH o UR
ri — tat sy — ta ris; tatta rosy; tadda rss; ata
rot—tad se—>da t — d/d__ r1So tatda rosy tadda rsse ada
r3 = a S3 H— a r1s3 tata 7983 tada r3S3 aa

- Correct UR" and PH' from a sample of PH o UR
- This dependent on the

- the subsequentiality of UR and PH
- that UR maps one morpheme to one UR
- that PH Is ISL,,

34



The procedure - summary

UR PH Sample of PH o UR
ri — tat sy — ta ris; tatta rosy; tadda rss; ata
rot—tad se—>da t — d/d__ r1So tatda rosy tadda rsse ada
r3 = a S3 H— a r1s3 tata 7983 tada r3S3 aa

- A learner based on this procedure can learn ISLy:
- progressive assim./dissim. - deletion
- regressive assim./dissim. - epenthesis

- This includes opacity (self-counterbleeding)
- So far we are limited to single processes

35



The procedure - summary

UR PH Sample of PH o UR
ri — tat sy — ta ris; tatta rosy; tadda rss; ata
rot—tad se—>da t — d/d__ r1So tatda rosy tadda rsse ada
r3 = a S3 H— a r1s3 tata 7983 tada r3S3 aa

- It requires that the UR Is recoverable from PH o UR

- What are the constraints on PH? On PH o UR?

36



The procedure - summary

- Environment functions PH,, must split into change and
elsewhere functions

- Any change PH makes must be seen at morpheme boundaries
- Formalizing these constraints on PH o UR is work in progress

37



Discussion



What is the nature of phonology?

PH

What Is the nature of:
- maps from URs to SRs?

- relation between SRs and URs?

33



What is the nature of phonology?

PH

PH

UR
morphemes

Assuming

- subsequential maps from URs to SRs, and

- a (relatively) concrete relation between SRs and URs
..allows for a procedure for learning URs and a grammar

39



Future work
- Formalizing “relatively concrete”

- Extending to cases in which PH is...

- ISLy

- |ISL; for some k

- in any subsequential class with a shared structure (Jardine et al,, 2014)
- output-strictly local (Chandlee et al, 2015)

- Extending to...

- featural learning (Heinz and Koirala, 2010;: Chandlee et al., 2019)

- optional/gradient processes
(Shibata and Heinz, 2019; Beros and de la Higuera, 2016)

4,0



Acknowledgements

Thank you for having me!

..and many thanks to Wenyue Hua and Huteng Dai, attendees of
the Rutgers/SBU/Haverford/Delaware subregular phonology
workshop, the Rutgers MathLing group, an audience at NECPhon,
and in particular Jeff Heinz, Charles Reiss, Bruce Tesar, Adam
McCollum, and Colin Wilson for their insightful comments.

N



Appendix: Regressive assimilation

w

UR(w)

PH o UR(w)

151
1592
1S53

tatta
tatda
tata

tatta
tadda
tata

251
259
983

tadda
tadta
tada

tadda
tadta
tada

tt C

r3S1
352
383

ata
ada
aa

ata
ada
aa

A1



Appendix: Regressive assimilation

UR(w)

PH o UR(w)

151
1592
1S53

tatta
tatda
tata

tatta
tadda
tata

251
259
983

tadda
tadta
tada

tadda
tadta
tada

- ta

//-\\ r2:tad

r3Sy
359
383

ata
ada
aa

ata
ada
aa

r3. d

9600000060

A2



Appendix: Regressive assimilation




Appendix: Regressive assimilation




Appendix: Regressive assimilation




