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What is the nature of phonology?

PH

What is the nature of:
- constraints on SRs? URs?  (Halle, 1959; Prince and Smolensky, 1993; Gorman, 2013)
- maps from URs to SRs? (Chomsky and Halle, 1968; Johnson, 1972)

- relation between SRs and URs?
(Hyman, 1970; Kiparsky, 1973; Kenstowicz and Kisseberth, 1977)



What is the nature of phonology?

PH

What is the computational nature of (learning)
- constraints on SRs? (Heinz, 2009, 2010)
- maps from URs to SRs? (Jardine et al,, 2014; Chandlee and Heinz, 2018)



Learning URs and a grammar

morphemes

- Computational restrictions on maps from URs to SRs provide avenue for
learning URs and a grammar

- This includes restrictions on relation between SRs and URs



Learning URs and a grammar

- Learning problem: the simultaneous inference of URs and a
grammar from SRs in a morphological paradigm
(Tesar, 2014; Cotterell et al,, 2015; Rasin et al,, 2018)

- Today: the subsequential functions provide a structure that
can solve this problem
(Mohri, 1997: Heinz and Lai, 2013; Jardine et al,, 2014)

- More specifically, we'll look at input strictly local (I1SL)
functions (Chandlee and Heinz, 2018)



Learning URs and a grammar

- This poses further restrictions on the relationship between
SRs and URs

- This is joint work with students at Rutgers

Wenyue Hua Huteng Dal

- This 1s very much work in progress!



The learning problem



The learning problem

English plural:

Analysis:
- A map from morphemes to URs

CAT-PL  |kaots]
CUFF-PL  [kafs]
DEATH-PL [debs]
GIRL-PL  [gorl/]
CHAIR-PL [tfer]
BOY-PL  [borz]

CAT — /keet/
PL — /z/

- A map from URs to SRs

Jz] — [8] | [—vol]




The learning problem
- M: finite set of morphemes

- 2 finite set of segments
- Learning targets:
- lexicon function UR: M* — ¥*

- phonology function PH: X* — >*

{CAT, DOG, .., PL}

{a, b, b, ..., z}

UR(CAT) = keet
UR(PL) = 7
UR(CAT-PL) = keetz

PH(keet) = keet

dogz
keets
PH(bnikz) = bniks
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The learning problem

- Learning data Is a finite sample of PH o UR

w e M*  PH(UR(w))
CAT-PL keet
CUFF-PL  kaf
DEATH-PL deb
GIRL-PL gorl
CHAIR-PL  tfer
BOY-PL bot




The learning problem

- Problem: identify UR and PH from a finite sample of PHo UR

- Questions: What is the nature of ...
- UR
- PH
- PHo UR
- the data sample

..such that learning is possible?
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Subsequentiality and
phonology



Subsequentiality and phonology
- Johnson (1972); Kaplan and Kay (1994): phonological maps are

regular
>
@)
=
Q
=
length of w
regular

E.g., directional harmony
/kaki-kee/ — [kaki-ka
Jkiki-kee/ — [kiki-ker]

memory

length of w

non-regular

E.g., “majority rules” (akovi¢, 2000)
[kaka-ka/ +— [kaka-ka]
[kacka-kae ) > [keekeo-kao]
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Subsequentiality and phonology

- Mohri (1997); Heinz and Lai (2013): Phonological maps are
subsequential;

- they are regular, and
- they are deterministic

computable functions

-
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Subsequentiality and phonology

- Subsequential: output can be determined deterministically
in one direction

any length bound by k
/ 51 62 63 e | T [T e [ TE| ... | Ty /

- (Determinisic # no optionality; Heinz in progress)
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Subsequentiality and phonology

- The subsequentiality of phonology is empirically
Well—supported (Chandlee and Heinz, 2012; Heinz and Lai, 2013; Payne, 2017; Luo,
2017; Chandlee and Heinz, 2018)

computable functions

phonology

- Though cf. Jardine (2016); McCollum et al. (2017)
14



Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aac}) =

15



Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aact) = aa
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Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aact) = aa
lcp({bac, abc}) =

15



Subsequentiality and phonology

- The longest common prefix (lcp) is the longest initial
sequence shared by a set of strings

lcp({aab, aaba, aact) = aa
lcp({bac, abc}) = A
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Subsequentiality and phonology

- Take a function f

tat
tatta
tadda
ddd
taddta

\

> t — d/d__(simul.)

/
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Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))
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Subsequentiality and phonology

- For f we define
def

fP(w) = Tep(f(wi))
- Let X ={a,d, t}

f(tad) = 1cp({
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Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
fP(tad) = Lcp({ f(tad) = tad,
f(tada) = tada,
f(tadd) = tadd,
f(tadt) = tadd,
f(tadaa) = tadaa,

})
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Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
ff(tad) = lep(q f(tad) = tad,
f(tada) = tada,
f(tadd) = tadd,
f(tadt) = tadd,
f(tadaa) = tadaa,

})
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Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
fP(tad) = tad
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Subsequentiality and phonology

- For f we define
def

fPw) = Tep(f(wX’))

- Let ¥ = {a,d, t}

fP(tad) = tad
fP(tadt) = 1cp({ f(tadt) = tadd,
f(tadta) = tadda,
f(tadtd) = taddd,
f(tadtt) = taddt,
f (tadtaa) = taddaa,

1)
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Subsequentiality and phonology

- For f we define
def

fPw) = Lep(f(wX))

- Let ¥ = {a,d, t}
fP(tad) = tad
fP(tadt) = tadd

17



Subsequentiality and phonology

- fP(w) is the contribution of w to any f(wv)

fr(w)

A

flwv)= la |b |a |..la|b |a]|..|b

- fP grows proportionally iff f subsequential...

m? (kaekak) = 1cp({kerkerkee, kakaka,...}))
— k
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Subsequentiality and phonology

- For w € X%, the environment function is

def

fulv) = fP(w) ™ f(wv)

fr(w) Ju(v)

A A

flwv)=la |b |a  ..|a |b|a ..




Subsequentiality and phonology

- For w € X%, the environment function is

- Ex.

f(wv)

def

fu(v) = fP(w)™" flwo)
7w il
—la|b|la | ..la|b|a]..

fraa(ta) = f2(tad)" f(tadta)

= (tad) 'tadda
= da
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Subsequentiality and phonology

- For w € ¥*, the environment function is
def

fulv) = fr(w) ™ flwv)
f(w) ful®)

A A

flwv)= la |b |a|..|a|b |a|..

+ EX fraa(ta) = fP(tad)" ! f(tadta)
= (tad) 'tadda
= da
frat(ta) = fP(tat)" ! f(tatta)
= (tat) tatta
= ta




Subsequentiality and phonology

- f is subsequential iff it has finite environment functions

w  fu(ta) w  fu(ta)
ta d da

t ta ad da

aa  ta dd da

at  ta td da

dt ta aad da

tt ta add da

aaa ta



Subsequentiality and phonology

- fis subsequential iff it has finite environment functions

w  f(ta) w  fu(ta)
ta d da

t ta ad da

aa ta dd da

fa — ft — e T faaa — e = ftatat — e fa/t
fd — fad — e T faad — e T ftatad — e fd
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Subsequentiality and phonology

- Environment functions correspond to states in a
deterministic finite-state transducer (Mohri, 1997)

- There are procedures for determining environment functions
from positive data (Oncina et al, 1993: Chandlee et al., 2014 Jardine et al, 2014)

- If f's environment functions represent k — 1 suffixes, f is
input strictly .-local (ISL;) (Chandlee, 2014 Chandlee and Heinz, 2018)

f — {fa/l‘n fd}

21



Towards a solution



Towards a solution

- M: set of morphemes; >: finite set of segments

- lexicon function UR: M* — X~
phonology function PH: X* — X*

- Problem: identify UR and PH from a finite sample of PH o UR

22



Towards a solution
- Example:

UR PH
ry — tat sy — ta
ro > tad ss—>da  t — d/d__
T3 — a S3 — a

Sample of PH o UR

w  PH(UR(w)) w  PH(UR(w)) w  PH(UR(w))

r1s; tatta ros1 tadda r3s; ata
r1So tatda roSe tadda r3S9 ada
r1S3 tata oS3 tada r3S3 aa




Towards a solution

- M: set of morphemes; >: finite set of segments

- lexicon function UR: M* — X~
phonology function PH: X* — X*

- Problem: identify UR and PH from a finite sample of PH o UR
- What Is the nature of ...

- UR

- PH

— PH o UR e
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Towards a solution

- M: set of morphemes; >: finite set of segments

- lexicon function UR: M* — X~
phonology function PH: X* — X*

- Problem: identify UR and PH from a finite sample of PH o UR
- The nature of ...

- UR

- PH

- PHoUR  ..is subsequential
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Towards a solution

Assumptions:
- UR has one environment function (= UR)

UR,(CAT)= ket for any w € M*;
UR,(PL) = z foranyw e M*, etc.
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Towards a solution

Assumptions:
- UR has one environment function (= UR)

UR,(CAT)= ket for any w € M*;
UR,(PL) = z foranyw e M*, etc.

- PH IS ISLs
- That is, I1ts environment functions are of the form PH,, o0 € 2

>, ={t,a,d} — possible env. functions are PH,, PH;, PH,

25



Towards a solution

Strategy:
- Two hypotheses UR' and PH’

- We modify UR’ so it has one environment function

- We make the opposite change in PH' to remain consistent
with input data

26



The procedure



The procedure

- Running example D C PHo UR

Sample of PH o UR

w  PH(UR(w)) w PH(UR(w)) w  PH(UR(w))
ris1 tatta ros1 tadda rss1 ata
ri1So tatda roSo tadda reSe ada
r1S3 tata ros3 tada r3S3 aa

27



The procedure

- Initialize PH' to the identity function

PH'(tad) = tad, PH'(tatta) = tatta, PH'(tadta) = tadta, etc.
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The procedure

- Initialize UR’ to a prefix tree transducer representing D

ri1s1 tatta ros; tadda rss; ata
r1So tatda ros, tadda rssy ada
r1s3 tata 19s3 tada 1r3s3 aa

29



The procedure

ri1s1 tatta ros; tadda rss; ata
r5o tatda ros, tadda r3sy ada
ri153 tata  ross tada  r3s; aa

r3

ooy

) @EE) @@@
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The procedure

ri181 tatta mrosy; tadda rssy ata
m: DP(m) sy tatda resy tadda r3sy ada
r1S83 tata  rgss3 tada  rgss aa

r3

51 S3 S1 S3 S1 53
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The procedure

ri181 tatta mrosy; tadda rssy ata
m : DP(m) rise tatda rysy tadda 1359 ada
r1S83 tata  rgs3 tada  rgss aa

r3

51 S3 S1 S3 S1 53
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The procedure

ri1s1 tatta ros; tadda rssy ata
m : DP(m) rsy tatda rosy tadda r3sy ada
r1S3 tata 1ros3 tada  r3ss aa

r3
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The procedure

r1s1 tatta ros; tadda rssy ata
m : DP(m) rsy tatda rysy tadda r3sy ada
r1S3 tata 1rys3 tada  r3ss aa

r3

s1 . ta S3 S1 53 S1 S3
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The procedure

ri1S81 tatta ros; tadda rssy ata
m : DP(m) rs, tatda mosy tadda r3sy ada
r1s3 tata  ross tada  rgss aa

r3
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The procedure

ris; tatta ros; tadda riys; ata
m : DP(m) risy tatda 7195y tadda r3s9 ada
ri1S3 tata ross tada  r3ss aa

s1 @ ta s3ia g :da S3:a 51 3

S9 1da

) @EE EEIE)
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The procedure

m : DP(m)

ri1s1 tatta ros; tadda 135
r1So tatda ros, tadda 1s3so

1S53 tata

253 tada

3583

|0

| |20 ®
ERE
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The procedure

r1Ss; tatta ros; tadda rss; ata
r1So tatda ros, tadda rssy ada
ri1S3 tata ross tada  rssy aa
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The procedure

151 tatta 251 tadda 351 ata
r1So tatda ros, tadda rssy ada
ri1S3 tata ross tada  rssy aa
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The procedure

wsy env. sy

r1S1 tt
351 a t
251 d d
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The procedure

ro: tad
t

So:[da
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The procedure

UR/ PH'

T3. Q&
ri: tat 3

ro: tad

s1: ta S3. a s1: ta S3. a s1: ta S3. a

@OE @HOE @EE

UR/(r1s1) = tatta PH'(tatta) = tatta
UR/(ry51) = tadta PH'(tadta) = tadda

33



The procedure - summary

UR PH Sample of PH o UR
ri — tat sy — ta ris; tatta rosy; tadda rss; ata
rot—tad se—>da t — d/d__ r1So tatda rosy tadda rsse ada
r3 = a S3 H— a r1s3 tata 7983 tada r3S3 aa

- Correct UR" and PH' from a sample of PH o UR
- This dependent on the

- the subsequentiality of UR and PH
- that UR maps one morpheme to one UR
- that PH Is ISL,,
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The procedure - summary

UR PH Sample of PH o UR
ri — tat sy — ta ris; tatta rosy; tadda rss; ata
rot—tad se—>da t — d/d__ r1So tatda rosy tadda rsse ada
r3 = a S3 H— a r1s3 tata 7983 tada r3S3 aa

- A learner based on this procedure can learn ISLy:
- progressive assim./dissim. - deletion
- regressive assim./dissim. - epenthesis

- This includes opacity (self-counterbleeding)
- So far we are limited to single processes

35



The procedure - summary

UR PH Sample of PH o UR
ri — tat sy — ta ris; tatta rosy; tadda rss; ata
rot—tad se—>da t — d/d__ r1So tatda rosy tadda rsse ada
r3 = a S3 H— a r1s3 tata 7983 tada r3S3 aa

- It requires that the UR Is recoverable from PH o UR

- What are the constraints on PH? On PH o UR?
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The procedure - summary

- Environment functions PH,, must split into change and
elsewhere functions

- Any change PH makes must be seen at morpheme boundaries
- Formalizing these constraints on PH o UR is work in progress
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Discussion



What is the nature of phonology?

PH

What Is the nature of:
- maps from URs to SRs?

- relation between SRs and URs?
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What is the nature of phonology?

PH

PH

UR
morphemes

Assuming

- subsequential maps from URs to SRs, and

- a (relatively) concrete relation between SRs and URs
..allows for a procedure for learning URs and a grammar
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Future work
- Formalizing “relatively concrete”

- Extending to cases in which PH is...

- ISLy

- |ISL; for some k

- in any subsequential class with a shared structure (Jardine et al,, 2014)
- output-strictly local (Chandlee et al, 2015)

- Extending to...

- featural learning (Heinz and Koirala, 2010;: Chandlee et al., 2019)

- optional/gradient processes
(Shibata and Heinz, 2019; Beros and de la Higuera, 2016)

4,0
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Appendix: Regressive assimilation

w

UR(w)

PH o UR(w)

151
1592
1S53

tatta
tatda
tata

tatta
tadda
tata

251
259
983

tadda
tadta
tada

tadda
tadta
tada

tt C

r3S1
352
383

ata
ada
aa

ata
ada
aa

A1



Appendix: Regressive assimilation

UR(w)

PH o UR(w)

151
1592
1S53

tatta
tatda
tata

tatta
tadda
tata

251
259
983

tadda
tadta
tada

tadda
tadta
tada

- ta

//-\\ r2:tad

r3Sy
359
383

ata
ada
aa

ata
ada
aa

r3. d

9600000060

A2
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