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Review



“[V]arious formal and substantive universals are intrinsic
properties of the language-acquisition system, these providing a
schema that is applied to data and that determines in a highly
restricted way the general form and, in part, even the substantive
features of the grammar that may emerge upon presentation of

appropriate data.”
Chomsky, Aspects

“[1]f an algorithm performs well on a certain class of problems
then it necessarily pays for that with degraded performance on the

set of all remaining problems.”
Wolpert and Macready (1997), NFL Thms.
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Today

- Using automata structure for learning

- ISL functions
— SL distributions

- Open questions



Learning ISL functions
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Learning input strictly local functions

- As any two ISL, functions share the same structure, this method
ILPD-learns the ISL, functions

- This method extends to any class of functions that shares such a

structure (Jardine et al., 2014)
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Learning input strictly local functions

- A learning algorithm for grammars that explicitly encode computational
properties of phonological patterns

- Learning for OSL (Chandlee et al,, 2015) and tier-based OSL (Burness and
McMullin, 2019) use a similar (yet distinct) method

- Learning URs uses this same structural concept (Hua et al. in progress)

- Learning for optional ISL processes uses the same basic idea (Heinz in
progress) based on Beros and de la Higuera (2016)
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Learning SL distributions



Learning strictly local distributions

- Probability distributions can be described with the same structure.

C:0.2
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Learning structured distributions

- This same technique can be extended to...

— Learning strictly piecewise distributions: Heinz and Rogers (2010)
- Learning SL distributions over features: Heinz and Koirala (2010)
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Review

- Studying computational principles that underly phonological patterns
Identify structural properties for learning:

- phonotactics
- processes
- stochastic generalizations

- A theory of phonology based on these principles derives typological
predictions from learning
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Open questions

- Non-string representations are best characterized using logic
(Jardine, 2016; Strother-Garcia, 2017)

- Learning with logic is a wide-open question
(Strother-Garcia et al.,, 2016)

- Learning using features (Chandlee et al,, 2019)
- Learning URs (Hua et al,, in progress)

- Learning optionality (Heinz et al,, in progress) and stochastic processes
(wide open)

- Distinguishing accidental versus systematic gaps (Rawski in progress)

19



Open questions

- A useful tool:

https://github.com/alenaks/SigmaPie

20


https://github.com/alenaks/SigmaPie

