Grammatical inference and
subregular phonology

Adam Jardine
Rutgers University

December 11, 2019 - Tel Aviv University

Review

Outline of course

- Day 1: Learning, languages, and grammars
- Day 2: Learning strictly local grammars
- Day 3: Automata and input strictly local functions

- Day 4: Learning functions and stochastic patterns, other
open questions

Review of days 1 & 2

- Phonological patterns are governed by restrictive
computational universals

- We studied one such universal of strict locality

Review of days 1 & 2

- We studied learning SL languages under the paradigm of
identification in the limit from positive data

p(?)
abab
ababab

ab A—— G,

N R O =

Today

- Learning with finite-state automata for
- strictly local languages

— input-strictly local functions

Strictly local acceptors

Strictly local acceptors

Engelfriet & Hoogeboom, 2001

“It Is always a pleasant surprise when two formalisms, intro-
duced with different motivations, turn out to be equally pow-
erful, as this indicates that the underlying concept is a natural
one. (p. 216)

Strictly local acceptors

- A finite-state acceptor (FSA) is a set of states and
transitions between states

Strictly local acceptors

abba

Strictly local acceptors

Strictly local acceptors

a b
00— 1 —1

b

a

Strictly local acceptors

a b b
00— 1 —1—1

a

Strictly local acceptors

a b b a
0—1—1—1—20

Strictly local acceptors

a b b a
00— 1=1-=1—=0V

Strictly local acceptors

baabba

Strictly local acceptors

Strictly local acceptors

b a a b b a
0 — 0 —1

Strictly local acceptors

b a a b b
0 —0—1—20

Strictly local acceptors

b a a b b a
0 —0—1—0-—20

Strictly local acceptors

b a a b b a
0 —0—1—=0-—=0-—=20

Strictly local acceptors

b a a b b a
0 —0—1—0—0—0-—1

Strictly local acceptors

b a a
0 —0—1—20

Strictly local acceptors

- A SL,FSA's states represent the k — 1 factors of ¥*

b b
BORNONO
a a

Not SL, for any & Slo;0=b1=a

10

Strictly local acceptors

- Traversing a SL,FSA is equivalent to scanning for k factors

FONO

X a b a b X

11

Strictly local acceptors

- Traversing a SL,FSA is equivalent to scanning for k factors

FONO

Xla|b a b X

11

Strictly local acceptors

- Traversing a SL,FSA is equivalent to scanning for k factors

11

Strictly local acceptors

- Traversing a SL,FSA is equivalent to scanning for k factors

FONO

11

Strictly local acceptors

- Traversing a SL,FSA is equivalent to scanning for k factors

11

Strictly local acceptors

- Traversing a SL,FSA is equivalent to scanning for k factors

FONO

X a b a|b|KX

11

Strictly local acceptors

- Forbidden k-factors are expressed by missing
transitions/accepting states

FONO

12

Strictly local acceptors

- SLFSAs describe exactly the SL languages

- Thus, they capture the same concept of locality as SL
grammars, but in a different way

13

Learning with strictly
local acceptors

Learning with strictly local acceptors

- Finite-state automata are useful because they have a
number of learning techniques (de la Higuera, 2010)

- We'll use a ‘transition filling’ of Heinz and Rogers (2013)

14

Learning with strictly local acceptors

15

Learning with strictly local acceptors

b: L a: L
b: T

- output function Q x X — {T,L}
- ending function Q — {T, 1}

15

Learning with strictly local acceptors

Learning procedure:
- Start with ‘empty’ SL,FSA
- Change 1 transitions to T when traversed by input data

16

Learning with strictly local acceptors

data
0 CV

Learning procedure:
- Start with ‘empty’ SL,FSA
- Change L transitions to T when traversed by input data

16

Learning with strictly local acceptors

data
0 CV

Learning procedure:
- Start with ‘empty’ SL,FSA
- Change L transitions to T when traversed by input data

16

Learning with strictly local acceptors

data
0 CV
1V

Learning procedure:
- Start with ‘empty’ SL,FSA
- Change L transitions to T when traversed by input data

16

Learning with strictly local acceptors

data ¢:L
0 CV
1V

2 CVCOV C:T/ \V:T
@) Do
VT

Learning procedure:
- Start with ‘empty’ SL,FSA
- Change L transitions to T when traversed by input data

16

Learning with strictly local acceptors

data
0 CV
1V
2 CVCV

Learning procedure:
- Start with ‘empty’ SL,FSA
- Change L transitions to T when traversed by input data

16

Learning with strictly local acceptors

+ Any SL, language can be described by varying {T, L} on this
structure

17

Learning with strictly local acceptors

+ Any SL, language can be described by varying {T, L} on this
structure

17

Learning with strictly local acceptors

+ Any SL, language can be described by varying {T, L} on this
structure

17

Learning with strictly local acceptors

- Any SL; language can be described by this structure

18

Learning with strictly local acceptors

- This procedure ILPD-learns any SL;, language for a given &

- It is distinct, yet based on the same notion of locality

19

Input strictly local
functions

Input strictly local functions

- Generative phonology is primarily interested in maps

/kam-pa/ — [kamba]

/kam-pa/ /kam-pa/ || FAITH E*NQ ID(voi)
b C—[+voi] / N __ [kampal -
— [kamal] o
[kamba 15 [kambal l *

Input strictly local functions

- Maps are (functional) relations
INC/ — [NC]

{(an, an), (anda, anda), (anta, anda), (lalalalampa, lalalalamba),...}

- We can study classes of relations like we studied classes of
formal languages

21

Input strictly local functions

- Johnson (1972); Kaplan and Kay (1994): phonological maps are
regular

memory
memory

length of w length of w

regular non-regular

- Regular functions +# regular languages!

22

Input strictly local functions

computable functions

- How do we extend strict locality to functions?

23

Input strictly local functions

computable functions

REG

- How do we extend strict locality to functions?

- Phonological maps are subsequential...
(Mohri, 1997; Heinz and Lai, 2013, et seq.)

23

Subsequential transducers

b: L a: L
b: T

Deterministic acceptor:
- output function Q@ x ¥ — {T,1}

- ending function Q — {T, 1}

24

Subsequential transducers

Subsequential transducer:
- output function Q x ¥ — I™

- ending function @Q — I

24

Subsequential transducers

babb

25

Subsequential transducers

25

Subsequential transducers

b a
00— 0—1
b a

25

Subsequential transducers

b a b
0 —>0—1—20
b a C

25

Subsequential transducers

b a b b
0 —0—=1—0—=20
b a C b

25

Subsequential transducers

b a b b
0 —>0—1—=0-—=20
b a C b d

25

Subsequential transducers

Let's do some examples...

26

Input strictly local functions

- ISL transducers are SFSTs whose states represent k£ — 1

suffixes. (Chandlee, 2014; Chandlee and Heinz, 2018)
SL acceptor: ISL transducer:
a
X al|blalb X X alblalb X

27

Input strictly local functions

+ 94% of the processes in P-Base (Mielke, 2004) are ISL (Chandlee
and Heinz, 2018).

- Others are output strictly local (Chandlee, 2014) or are
non-local, but subsequential (Luo, 2017; Payne, 2017)

23

Review
- SL acceptors exactly capture the SL notion of locality

- Learning with SL acceptors takes advantage of their shared
state structure

- The ISL functions extend this structure from languages to
functions

29

