Grammatical inference and subregular phonology

Adam Jardine Rutgers University

December 10, 2019 · Tel Aviv University

Review

Outline of course

- **Day 1:** Learning, languages, and grammars
- **Day 2:** Learning strictly local grammars
- **Day 3:** Automata and input strictly local functions
- **Day 4:** Learning functions and stochastic patterns, other open questions

Review of day 1

- Phonological patterns are governed by restrictive computational universals
- **Grammatical inference** connects these universals to solutions to the **learning problem**:

Problem

Given a **positive** sample of a language, return a grammar that describes that language **exactly**

Review of day 1

• Strictly local languages are patterns computed solely by *k*-factors in a string

Today

- A provably correct method for learning SL_k languages
- The paradigm of **identification in the limit from positive data** (Gold, 1967; de la Higuera, 2010)
- Why learners target **classes** (not specific languages, or all possible languages)

Learning paradigm

Learning paradigm

language **exactly**

This is (exact) identification in the limit from positive data (ILPD; Gold, 1967)

• A **text** of L_{\star} is some sample of positive examples of L_{\star}

A **presentation** of L_{\star} is a sequence p of examples drawn from L_{\star}

(this is the 'in the limit' part)

A learner ${\mathcal A}$ takes a finite sequence and outputs a grammar

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

 $\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \leq n \}$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

 $\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \le n \}$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

 $\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \leq n \}$

$$\begin{array}{ccc} t & p(t) & G_t \\ \hline 0 & bab \end{array}$$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}\!\!:$

 $\mathcal{A}_{\text{Fin}}(p[n]) = \{w \mid w = p(i) \text{ for some } i \leq n\}$ Let's set $L_{\star} = \{ab, bab, aaa\}$ $\frac{t \quad p(t) \quad G_t}{0 \quad bab \quad \{bab\}}$

10

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}\!\!:$

 $\mathcal{A}_{\text{Fin}}(p[n]) = \{w \mid w = p(i) \text{ for some } i \leq n\}$ Let's set $L_{\star} = \{ab, bab, aaa\}$ $\frac{t \quad p(t) \quad G_t}{0 \quad bab \quad \{bab\}}$

 $1 \quad ab$

10

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

 $\mathcal{A}_{\operatorname{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \leq n \}$

$$egin{array}{cccc} t & p(t) & G_t \ \hline 0 & bab & \{bab\} \ 1 & ab & \{ab, bab\} \end{array}$$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

$$\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \leq n \}$$

$$\begin{array}{cccc} t & p(t) & G_t \\ \hline 0 & bab & \{bab\} \\ 1 & ab & \{ab, bab\} \\ 2 & bab \end{array}$$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

$$\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \leq n \}$$

t	p(t)	G_t
0	bab	$\{bab\}$
1	ab	$\{ab, bab\}$
2	bab	$\{ab, bab\}$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

$$\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \leq n \}$$

$$\begin{array}{cccc} t & p(t) & G_t \\ \hline 0 & bab & \{bab\} \\ 1 & ab & \{ab, bab\} \\ 2 & bab & \{ab, bab\} \\ 3 & aaa & \{ab, bab, aaa\} \end{array}$$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}$:

$$\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \le n \}$$

t	p(t)	G_t
0	bab	${bab}$
1	ab	$\{ab, bab\}$
2	bab	$\{ab, bab\}$
3	aaa	$\{ab, bab, aaa\}$
4	ab	$\{ab, bab, aaa\}$

Let's take the learner $\mathcal{A}_{\mathrm{Fin}}\!\!:$

$$\mathcal{A}_{\mathrm{Fin}}(p[n]) = \{ w \mid w = p(i) \text{ for some } i \le n \}$$

t	p(t)	G_t
0	bab	$\{bab\}$
1	ab	$\{ab, bab\}$
2	bab	$\{ab, bab\}$
3	aaa	$\{ab, bab, aaa\}$
4	ab	$\{ab, bab, aaa\}$
	•••	
308	bab	$\{ab, bab, aaa\}$

 \mathcal{A} converges at point n if $G_m = G_n$ for any m > n

t	p(t)	G_t		
0	abab	G_0		
1	ababab	G_1		
2	ab	G_2		
:	•	•	_	
n	ababab	G_n	converge	ence
n+1	abababab	G_n		
÷	:	:		
m	λ	G_n		
•	:	•		

ILPD-learnability

A class C is **ILPD-learnable** if there is some algorithm A_C such that for *any* stringset $L \in C$, given *any* positive presentation p of L, A_C converges to a grammar G such that L(G) = L.

- How is ILPD learning an idealization?
- What are the advantages of using ILPD as a criterion for learning?

Learning strictly local languages

- Given any k, the class SL_k is IDLP-learnable.
- Using $\mathcal{A}_{\mathrm{Fin}}$ as an example, how might we learn a SL $_k$ language?

$$G_{\star} = \{CC, C \ltimes\}$$

t	datum	hypothesis
0	V	
1	CVCV	
2	CVVCVCV	
3	VCVCV	
:		

$$G_{\star} = \{CC, C \ltimes\}$$

t	datum	hypothesis
0	V	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
1	CVCV	
2	CVVCVCV	
3	VCVCV	
:		

$$G_{\star} = \{CC, C \ltimes\}$$

t	datum	hypothesis
0	V	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
1	CVCV	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
2	CVVCVCV	
3	VCVCV	
:		

$$G_{\star} = \{CC, C \ltimes\}$$

t	datum	hypothesis
0	V	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
1	CVCV	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
2	CVVCVCV	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
3	VCVCV	
:		

 $G_{\star} = \{CC, C \ltimes\}$

t	datum	hypothesis
0	V	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
1	CVCV	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
2	CVVCVCV	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
3	VCVCV	$\{ \rtimes C, \rtimes V, CC, CV, C \ltimes, VC, VV, V \ltimes \}$
:		

$$\mathcal{A}_{\mathrm{SL}_k}(p[i]) = \mathtt{fac}_k(\Sigma^*) - \mathtt{fac}_k\{p(0), p(1), ..., p(i)\}$$

$$\mathcal{A}_{\mathrm{SL}_k}(p[i]) = \mathtt{fac}_k(\Sigma^*) - \mathtt{fac}_k\{p(0), p(1), ..., p(i)\}$$

• The **characteristic sample** is ...

$$\mathcal{A}_{\mathrm{SL}_k}(p[i]) = \mathtt{fac}_k(\Sigma^*) - \mathtt{fac}_k\{p(0), p(1), ..., p(i)\}$$

• The characteristic sample is $fac_k(L_{\star})$

$$\mathcal{A}_{\mathrm{SL}_k}(p[i]) = \mathtt{fac}_k(\Sigma^*) - \mathtt{fac}_k\{p(0), p(1), ..., p(i)\}$$

- The characteristic sample is $fac_k(L_{\star})$
- The **time complexity** is **linear**—the time it takes to calculate is directly proportional to the size of the data sample.

Let's learn Pintupi. Note that k = 3. What is the initial hypothesis? At what point do we converge?

t	datum	hypothesis
0	ά	
1	όσ	
2	όσσ	
3	όσόσ	
4	<i></i> σσσσσ	
5	<i></i> σσσσσσσ	
:		

• We must know k in advance

• Gold (1967): any class \mathcal{C} such that $\operatorname{Fin} \subsetneq \mathcal{C}$ is not learnable from positive examples

• Consider this pattern from Inseño Chumash:

$$\begin{split} & \int -\text{api-t} \int^h \text{ol-it} & \text{`I have a stroke of good luck'} \\ & \text{s-api-ts}^h \text{ol-us} & \text{`he has a stroke of good luck'} \\ & \int -\text{api-t} \int^h \text{ol-uf-waf} & \text{`he had a stroke of good luck'} \\ & \text{ha-fxintila-waf} & \text{`his former Indian name'} \\ & \text{s-is-tisi-jep-us} & \text{`they (two) show him'} \\ & \text{k-fu-fojin} & \text{`I darken it'} \end{split}$$

• What phonotactic constraints are active here?

Consider this pattern from Inseño Chumash:

ha-ſxintila-waſ s-is-tisi-jep-us k-∫u-∫ojin

 \int -api-t \int ^hol-it 'I have a stroke of good luck' s-api-ts^hol-us 'he has a stroke of good luck' ∫-api-t∫^hol-u∫-wa∫ 'he had a stroke of good luck' 'his former Indian name' 'they (two) show him' 'I darken it'

• What phonotactic constraints are active here?

*[...s, *s...]

• Let's assume $L_{\star} = L_C$ for $\Sigma = \{s, o, t, f\}$ as given below

 $L_C = \{$ so, ss, ..., sos, fof, fofof, sosos, fototof, sototos, ... $\}$

t	datum	hypothesis
0	SOS	$\{ss, so, s\int,, \int s, \int t, \iint\}$
1	sotoss	$\{ss, so, s\int,, \int s, \int t, \iint\}$
2	∫o∫to∬	$\{ss, so, sf,, fs, ft, ff\}$
:		

• Let's assume $L_{\star} = L_C$ for $\Sigma = \{s, o, t, f\}$ as given below

 $L_C = \{$ so, ss, ..., sos, $\int o \int , \int o \int o \int , sosos, \int o toto \int , sototos, ... \}$

t	datum	hypothesis
0	SOS	$\{ss, so, sf,, fs, ft, ff\}$
1	sotoss	$\{ss, so, s\int,, \int s, \int t, \int \}$
2	∫o∫to∬	$\{ss, so, sf,, fs, ft, ff\}$
÷		

• Learner will never see sf or fs, so in the limit $G = \{s_{f}, fs\}$.

 $L_C = \{$ so, ss, ..., sos, $\int o \int$, $\int o \int o \int$, sosos, $\int o toto \int$, sototos, ... $\}$

 $G = ?{sj,s}$

 $\checkmark \text{ sosos } \in L_C$ $\checkmark \text{ soss } \notin L_C$ $\bigstar \text{ soss } \notin L_C$

 $L_C = \{$ so, ss, ..., sos, $\int o \int , \int o \int o \int , sosos, \int o toto \int , sototos, ... \}$

 $G_{k=3} = ?\{\text{sof, ssf, stf, sff, \dots fos, fss, fts, ffs}\}$

 $\checkmark \text{ sosos } \in L_C$ $\checkmark \text{ sofs } \notin L_C$ $\checkmark \text{ sofos } \notin L_C$ $\checkmark \text{ fotos } \notin L_C$

 $L_C = \{$ so, ss, ..., sos, $\int o \int , \int o \int o f$, sosos, $\int o toto f$, sototos, ... $\}$

- There is no k such that \mathcal{A}_{SL_k} learns a grammar for L_C
- This is because there is **no SL grammar** for L_C !

- $\cdot \ \mathcal{A}_{\mathrm{SL}_k}$ only learns SL_k languages
- This is the advantage of studying learning with formal grammatical inference:
 - we what patterns it **can learn**,
 - what patterns it cannot learn,
 - on exactly what data

Review

- \cdot As a hypothesis of phonotactic learning, $\mathcal{A}_{\mathrm{SL}_k}$
 - makes **restrictive** predictions about what patterns can and cannot be learned
 - suggests phonological learning is **modular** (Heinz, 2010)
 - directly connects computational typological generalizations with a theory of learning

Review

Problem

Given a **positive** sample of a language, return a grammar that describes that language **exactly**

- We have formalized this problem as identification in the limit from positive data
- We have solved this problem for any SL_k class
- We'll find another solution with automata, and extend that to learn processes