
Grammatical inference and subregular
phonology

Adam Jardine, Rutgers University

Tel Aviv Winter School
December 9-12, 2019

1 Overview

• The interplay between linguistic universals and acquisition is at the heart
of explanation in generative linguistics:

“[V]arious formal and substantive universals are intrinsic
properties of the language-acquisition system, these providing
a schema that is applied to data and that determines...the gram-
mar that may emerge upon presentation of appropriate data.” Chomsky, Aspects, p. 53

• Results in computational learning theory agrees with this approach:

“[I]f an algorithm performs well on a certain class of prob-
lems then it necessarily pays for that with degraded perfor-
mance on the set of all remaining problems.” Wolpert and Macready

(1997), p. 69, in one of the
“No Free Lunch” papers

• Course description:

“The subregular hypothesis identifies computational uni- subregular hypothesis
versals of phonological patterns. Grammatical inference ... al- grammatical inference
lows us to develop learning procedures that take advantage of
these universals. ...

• Rough overview:

Day 1: Learning, languages, and grammars

Day 2: Learning strictly local grammars

Day 3: Automata and input strictly local functions

Day 4: Learning functions and stochastic patterns, other open ques-
tions

• By the end of this course, you should be able to engage with the litera-
ture, and start your own research project!

1

Jardine Grammatical inference and subregular phonology 2

2 Defining learning

2.1 What is learning?

•What do we mean when we say a child/animal/machine has ‘learned’
something?

•What do we mean when we say a child learned their language?

•What is the nature of the sample? sample

•When is learning successful?

2.2 Grammatical inference

• Grammatical inference is a subfield of computer science that aims to Canonical text: de la
Higuera (2010),
Grammatical Inference

formalize these questions

• A grammar is a finite representation of a (potentially infinite) lan- grammar
guage

• Grammatical inference studies algorithms that solve the problem of
inducing a grammar from a finite sample of data

• Two prongs of attack:

– formal grammatical inference formal/empirical
grammatical inference

– empirical grammatical inference

Jardine Grammatical inference and subregular phonology 3

• We are going to focus on theoretical grammatical inference:

– What is the learning problem?
– What is an algorithm that solves the problem?

Learning is going to be measured as the convergence
toward a stable and good solution. In an ideal world, one
would hope to have this convergence depend on a magic
number: as soon as a given quantity of information or data
is available, the intended grammar would be learned. ...
But many things can go wrong: the data may not be rep-
resentative or, even when it is, we may be facing some in-
tractable problem. It is therefore necessary to impose some
conditions on the data in order to secure a learning result,
which will therefore always be read as: provided the data
available has a minimal quality (with respect to a target
and the criterion we impose), we can ensure that the solu-
tion is good. (Heinz et al., 2016, p.24)

3 Languages and Grammars

• What is a pattern?

• In phonology, there are essentially two kinds of patterns:
Well-formedness (phonotactics) *NC

˚Transformations (processes) /NC
˚

/→ [NC
ˇ

]

• Phonotactics described sets of words:

The set of well-formed words according to *NC
˚

is

{an, anda, amba, lalalalanda, blIk, ffffffff, ...}

and the set of ill-formed words is

{anta, ampa, lalalalaNka, ...}.

• Transformations are relations pairing underlying forms with surface
forms:
/NC

˚
/→ [NC

ˇ
]

{(an, an), (anda, anda), (anta, anda), (lalalalampa, lalalalamba),...}

Jardine Grammatical inference and subregular phonology 4

3.1 Formal languages

• Some definitions:

Alphabet (Σ) alphabet, Σ

String w string

The empty string λ is empty string, λ

Σ∗ is Σ∗

A formal language (or often just language) L is (formal) language L

Alternatively, we can think of L as a function mapping each string in
Σ∗ to either > (true) or ⊥ (false). >,⊥

• Some other notation:

– (w)n is n repetitions of w (e.g. b4 = bbbb, (ab)3 = ababab, etc.) (w)n

– |w| is the length of w (e.g. |λ| = 0, |ababab| = 6, etc.) |w|
– w·v or just wv is the concatenation of w and v (e.g. ab·ba = abba). concatenation w · v, wv

3.2 Language classes

• There are a lot of formal languages. In fact, many languages are not
even computable—that is, there is no finite procedure that can deter- computable
mine all and only the strings in the language.

• We will restrict ourselves to languages that are computable. The set
of all computable languages is a class. A class, usually denoted C, is class C
a set of languages.

• Interesting classes are those characterized by some abstract property
(such as computability). Some examples are given below and in Fig-
ure 1. This will make more sense when we see some examples.

• Importantly, the property that defines a class can1 lead to a learning 1 Not always!
procedure for the class. We’ll show this with a very specific linguistic
example.

Jardine Grammatical inference and subregular phonology 5

finite (FIN)
strictly local (SL)
regular (REG)
context free (CF)

Example 1 Let Σ = {a, b}. Example languages are the set of strings...

– L1 = {a, bb, aaba} (finite)
– of the form (ab)n, L2 = {λ, ab, abab, ababab, ...} (strictly local)
– of the form (aa)n, L3 = {λ, aa, aaaa, aaaaaa, ...} (regular)
– of the form anbn, L4 = {λ, ab, aabb, aaabbb, ...} (context free)

FIN SL REG CF

L1

L2

L3

L4

Figure 1: Some linguistically important classes of stringsets

3.3 Strictly local languages and grammars

• We’re going to add special boundary symbols o,n 6∈ Σ o,n

• Let oΣ∗n refer to the set of strings own for w ∈ Σ∗ oΣ∗n

Definition 1 (substring) A string u is a substring of another string w iff w = substring
v1uv2 for some other strings v1 and v2.

Definition 2 (k-factor) A string u is a k-factor of another string w iff either: k-factor

- |u| = k, |own| ≥ k, and u is a substring of own; or

- |own| < k and u = own

• We write fack(w) for the set of k-factors of w. fack(w)

fac2(abbab) = {oa, ab, bb, ba, ab, bn}

Jardine Grammatical inference and subregular phonology 6

• Other examples:

– fac2(abab) =

– fac3(aaba) =

– fac6(aaba) =

• For a set L of strings, the k-factors of L are fack(L) =
⋃

w∈L fack(w) fack(L)

Definition 3 (SLk grammar) A SLk grammar is a set G of k-factors of SLk grammar
Σ∗.

A string w ∈ Σ∗ satisfies G, w |= G, if none of the k-factors of w are in the satisfaction (|=)
set G; i.e. fack(w) ∩G = ∅.
The set L(G) is the set of strings that satisfy G, i.e.

L(G) = {w ∈ Σ∗ | w |= G}

• We often call G for L the set of forbidden k-factors of L forbidden k-factors

• A language L is SL iff it is SLk for some k. SL

• Let’s do some examples.

a. What is a SL2 grammar for the set (ab)n?

b. Let Σ = {C, V }. What is a SL3 grammar for the set of strings
over Σ that satisfy the generalization “C does not occur three
times in a row”?

c. Consider Σ = {σ, σ́} and the stress pattern of Pintupi:2 2 Hansen and Hansen
(1969)σ́σ

σ́σσ
σ́σσ́σ
σ́σσ́σσ
σ́σσ́σσ́σ
σ́σσ́σσ́σσ
σ́σσ́σσ́σσ́σ

Is there a SL2 grammar for this pattern? Is there a SL3 grammar?

Jardine Grammatical inference and subregular phonology 7

d. Is there a SL2 grammar for (aa)n? A SL3 grammar? A SLk gram-
mar for any k?

e. How about the following pattern from Ineseño Chumash? (Applegate, 1972; Heinz,
2010)

S-api-tShol-it ‘I have a stroke of good luck’
s-api-tshol-us ‘he has a stroke of good luck’
S-api-tShol-uS-waS ‘he had a stroke of good luck’
ha-Sxintila-waS ‘his former Indian name’
s-is-tisi-jep-us ‘they (two) show him’
k-Su-Sojin ‘I darken it’

• Other major classes identified as relevant to phonotactics are given in
the chart in Fig 2. References:

– Tier-based strictly local (TSL) languages – Heinz et al. (2011); tier-based strictly local
(TSL)McMullin (2016)

– Strictly piecewise (SP) languages – Heinz (2010) strictly piecewise (SP)

– For a formal review of these and other subregular classes, and
how they relate to natural language stress patterns, see Rogers
et al. (2013).

REG

TSL

SL SP

Figure 2: Hierarchy of subregular language classes related to phonotactics.

4 Learning SL languages

4.1 Learning paradigm

• An influential framework is Gold (1967)’s identification in the limit
from positive data (ILPD) identification in the limit

from positive data
(ILPD)

Jardine Grammatical inference and subregular phonology 8

• We assume the learner is learning from a text; that is, the learner can-
textnot make requests to the oracle, it only receives examples

• A positive presentation p of a stringset L is an infinite sequence positive presentation p

p(0), p(1), p(2), ...

such that for every w ∈ L, there is some i such that p(i) = w.

• Let p[i] denote the finite sequence p(0), p(1), ..., p(i). p[i]

• A learner is an algorithm A is a function that takes as input a finite
sequence and returns a grammar; that is, A(p[i]) = G, where G is
a finite representation for a stringset. This G is called the learner’s
hypothesis given p[i]. hypothesis

• A learner is said to converge on a presentation p if there is some n converge
such that for all m > n, A(p[n]) = A(p[m]).

Data p(0) p(1) p(2) ... p(n) p(n+ 1) p(n+ 2) ... p(m) ...
Hyp. G0 G1 G2 ... Gn Gn Gn ... Gn ...

Figure 3: Convergence

• A class C is ILPD-learnable if there is some algorithm AC such that ILPD-learnable
for any stringset L ∈ C, given any positive presentation p of L, AC
converges to a grammar G such that L(G) = L.

• Let’s show that the Finite class is ILPD-learnable.

• How is ILPD learning an idealization?

• What are the advantages of using ILPD as a criterion for learning?

4.2 Learning SL grammars

• The class of SLk for a specific k is ILPD-learnable

• Consider a SLk language L? representable by some SLk grammar G?.
We are looking for a procedure that converges to a grammar G such
that L(G) = L? from positive examples of L?.

Jardine Grammatical inference and subregular phonology 9

G? = {CC,Cn}

Data Hypothesis
0 V

1 CV CV

2 CV V CV CV

3 V CV CV

• Let’s check if the learner has generalized. generalization
Does the grammar it converges to accept CV CV V ? How about
CV CV V C?

• Let’s call our algorithm ASLk
. ASLk

Assuming the target language is SLk, in general, the hypothesis Gi at
time step i is

Gi = ASLk
(p[i]) =

• For a target L?, a characteristic sample for a learner A is a set D ⊆ L? characteristic sample
(de la Higuera, 2010)such that if a sequence p[i] of a positive presentation of L? contains

D, then A is guaranteed to converge to L?.

What is the characteristic sample for the SLk learner for any L?

whose grammar is G??

• The time complexity of a learner A is the number of steps A takes to time complexity
compute a hypothesis given some sequence p[i], relative to the size of
p[i].

The time complexity of ASLk
is linear, that is, the time it takes to linear

run on any p[i] is directly proportional to the size of p[i]. This means
ASLk

is extremely efficient, and thus cognitively plausible. efficient

Jardine Grammatical inference and subregular phonology 10

• For extra practice, let’s learn Pintupi. Note that k = 3. What is the
initial hypothesis? At what point do we converge?

t datum hypothesis
0 σ́

1 σ́σ

2 σ́σσ

3 σ́σσ́σ

4 σ́σσ́σσ

5 σ́σσ́σσ́σ

4.3 The limits of SL learning

• SLk is ILDP-learnable, but SL in general is not. This follows from the
following two facts:

– Any class C such that FIN (C is not learnable from positive data
only (Gold, 1967).

– FIN (SL

• How about the long-distance assimilation pattern from Chumash?

• The learning algorithm ASLk
only learns SLk languages. We know

exactly what patterns it can learn and what patterns it cannot learn,
and on exactly what data. This is the advantage of studying learn-
ing with formal grammatical inference.

4.4 Connection to learning phonotactics

• Learning mechanisms for the TSL and SP languages (recall from Fig
2) are based on very similar mechanisms.
References:

– Learning TSL languages – Heinz et al. (2011); Jardine and Heinz
(2016); Jardine and McMullin (2017)

– Learning SP languages – Heinz (2010); Heinz and Rogers (2013)

Jardine Grammatical inference and subregular phonology 11

5 Learning with strictly local automata

“It is always a pleasant surprise when two formalisms, in- Engelfriet and
Hoogeboom (2001, p.
216)

troduced with different motivations, turn out to be equally
powerful, as this indicates that the underlying concept is a nat-
ural one.”

5.1 Strictly local acceptors

• Another formalism for studying formal languages are automata. Au- automata
tomata are abstract machines that perform computations in some
kind of well-defined way.

• A (deterministic) finite-state acceptor (FSA) is finite-state acceptor
(FSA)

– An input alphabet Σ

– A finite set Q of states states Q

– A single initial state q0 ∈ Q
– A set F ⊆ Q of final states final states F

– A transition function δ : Q× Σ→ Q transition function δ

0 1

a

a

b b

Figure 4: FSA for the language of strings over {a, b} that contain an even number
of as. States are circles with accepting states marked with double circles, arrows
mark transition from state to state, and the state 0 with an unlabeled incoming
arrow with no source state is the initial state.

• The REG class is exactly those languages that are describable by Recall REG from Fig. 1
FSAs.

• A strictly k-local FSA (SLkFSA) is a FSA that has exactly one state strictly k-local FSA
(SLkFSA)per k − 1 factor of Σ∗.

• SLkFSAs describe exactly the SLk languages.

Jardine Grammatical inference and subregular phonology 12

5.2 Learning SLFSAs

• FSAs are useful because there are a number of learning techniques For an overview, see
Heinz et al. (2016),
Chapter 3.

that make use of them.

• We’re going to study a lesser-used, but incredibly useful, technique
of ‘transition-filling,’ described (originally?) in Heinz and Rogers
(2013).

• Let’s add to our FSAs an output function and a ending function that
output to the boolean values {>,⊥}

– An output function ω : Q× Σ→ {>,⊥} output function ω

– A ending function ε : Q→ {>,⊥} ending function ε

• These work the same as usual acceptors, just that acceptance is in-
stead based on only traversing > transitions, and ending on >
states.

0 : ⊥ 1 : >

a : >

b : >

b : ⊥ a : ⊥

Figure 5: FSA for the language (ab)n with output function (marked on
transitions after the colon) and ending function (marked on states after
the colon).

• As all SLk transducers share the same structure of transitions, we
can learn by the following procedure:

– initial hypothesis is the SLk representation of the empty
language.3 3 =the empty set, {}

– we set to > the output of any transition that is taken by any
string in the data presentation.

– we set to > the output of any state that any string in the data
presentation ends on.

• Let’s see how this works with an example. Below is the standard SLk

structure for the alphabet {C, V }. How does the above procedure
change the outputs on the transitions?

Jardine Grammatical inference and subregular phonology 13

data
0 CV
1 CV CV
2 CV CV CV
3 V CV CV

o : ⊥

C : ⊥

V : ⊥

C : ⊥

V : ⊥

V : ⊥

V : ⊥

C : ⊥

6 Input-strictly local functions and learning pro-
cesses

6.1 Subsequential functions

• Consider an input alphabet Σ and an output alphabet Γ. input alphabet

output alphabet• A relation is some set R ⊆ Σ∗ × Γ∗, that is strings in Σ∗ paired with
relationstrings in Γ∗.

{(an, an), (anda, anda), (anta, anda), (lalalalampa, lalalalamba),...}

• R is a function iff (w, v) ∈ R and (w, u) ∈ R implies v = u. We’ll only function
be considering functions today.

• We can create subsequential finite-state transducers (SFSTs) by tak- subsequential finite-state
transducers (SFSTs)ing our output and ending functions and changing their outputs

from values in {>,⊥} to strings in Γ∗.4 4 I mean subsequential in
the sense of
Schützenberger and
Mohri; other authors (e.g.
Filiot and Reynier 2016)
use the term sequential for
the same class.

– An input alphabet Σ and an output alphabet Γ

– A finite set Q of states
– A single initial state q0 ∈ Q
– A set F ⊆ Q of final states
– A transition function δ : Q× Σ→ Q

– An output function ω : Q× Σ→ Γ∗

– A ending function ε : Q→ Γ∗

• Let’s do some examples.

Jardine Grammatical inference and subregular phonology 14

a. Write a FST for (a) interpreted non-iteratively. Examples are
given below.
(a) a → b / b
aba 7→ abb
baba 7→ bbbb
baaaa 7→ bbaaa

b. Write a FST for (b) interpreted iteratively.
(b) a → b / b
aba 7→ abb
baba 7→ bbbb
baaaa 7→ bbbbb

c. Write a FST for rule in (c), interpreted non-iteratively.
(c) a → b / b
aba 7→ bba
baba 7→ bbba
aaaab 7→ aaabb

d. In Kikongo, the liquid /l/ becomes [n] after another nasal: Ao (1991)
(d) l → n / m ...
tala 7→ tala
mala 7→ mana
matala 7→ matana

• Functions describable with SFSTs are called (left-)subsequential
functions. Functions describable with SFSTs working in reverse are (left-)subsequential

functionscalled the right-subsequential functions.
right-subsequential
functions• Recent work has looked at sub-classes of the subsequential functions

and as it relates to phonology. References:

– Right/left-subsequential functions – Mohri (1997); Heinz and
Lai (2013); Heinz (2018)

– Input strictly local (ISL) functions, (right- and left-)output input strictly local (ISL)
strictly local (OSL) functions – Chandlee (2014); Chandlee et al. (right-/left-)output

strictly local (OSL)(2015); Chandlee and Heinz (2018)

Jardine Grammatical inference and subregular phonology 15

• For a formal definition of a version of SFSTs that can deal with op-
tionality, see Beros and de la Higuera (2016).

REG

L-SUBSEQ R-SUBSEQ

R-OSLL-OSL ISL

Figure 6: Hierarchy of subregular function classes related to phonology.

6.2 Input strictly local functions

• The ISL functions are exactly those whose SFSTs have states who rep-
resent k − 1 suffixes.

• Examples (a) and (c) above are ISL, but the others are not.

• 94% of the processes in P-Base (Mielke, 2004) are ISL (Chandlee and
Heinz, 2018).

6.3 Learning input strictly local functions

• The following is based on the “transition-filling” technique from Jar-
dine et al. (2014).

• The target is an ISL function f ; input data is from d ⊂ f

• A prefix of w is a string u s.t. w = uv for some string v prefix

• Let u−1w = v s.t. w = uv (if u is a pref. of w, undefined otherwise)

• The common prefixes of a set L is the set common prefixes

cmnprfs(L) = {u | ∀w ∈ L, u is a prefix of w}

• The longest common prefix (lcp) of a set L of strings is longest common prefix
(lcp)

lcp(L) = w ∈ cmnprfs(L) s.t. ∀v ∈ cmnprfs(L), |w| ≥ |v|

Jardine Grammatical inference and subregular phonology 16

• For d we define dp as dp

dp(w)
def
= lcp(d(wΣ∗))

• For w, we define dw as dw

dw(u) = dp(w)−1d(wu)

• Then dpw is dpw

dpw(u)
def
= lcp(dw(uΣ∗))

• We then start with a ‘blank’ ISLk SFST like the one below.

o : �

C : �

V : �

C : �

V : �

V : �

C : �

V : �

C : �

• We then fill the output for the transition on σ from state q as

σ : dpw(σ)

for some w that reaches q, and likewise the ending transition as

q : dp(w)−1d(v)

for any w, v that reach q.

• Let’s work on some examples using the above machine:

– V → ∅ / V

(CV C,CV C)
(CV V,CV)
(CV CCV,CV CCV)
(CCV CC,CCV CC)
(CCCV CV,CCCV CV)
(CV V CV,CV CV)
(V, V)

o :

C :

V :

C :

V :

V :

C :

V :C :

Jardine Grammatical inference and subregular phonology 17

– ∅ → V / C {C,#}

(CV C,CV CV)
(CV V,CV V)
(CV CCV,CV CCV)
(CCV CC,CCV CCV)
(CCCV CV,CCCV CV)
(CV CV,CV CV)
(CV V CV,CV V CV)
(V, V)

o :

C :

V :

C :

V :

V :

C :

V :C :

• This algorithm ILPD-learns any class whose functions share a state &
transition structure

• This very general idea extends to other kinds of learning:

– Learning URs (Hua et al. in progress)
– Learning OSL (Chandlee et al., 2015) tier-based OSL (Burness

and McMullin, 2019) use a similar (yet distinct) method
– Learning for optional ISL processes uses the same basic idea

(Heinz in progress) based on Beros and de la Higuera (2016)

6.4 Strictly Local Distributions

• We can replace strings in Γ∗ with numbers between 0 and 1

o : 0.0

C : 0.2

V : 0.5

C : 0.6

V : 0.4

V : 0.6

C : 0.2

V : 0.1

C : 0.4

• Take a sequence of data. We begin with 0s on the transitions, and:

– add 1 to each transition whenever it is traversed
– divide each count by the times a state has been visited (=the total number of

outgoing transitions +
times ended on each
state)

Jardine Grammatical inference and subregular phonology 18

• In the limit, this is guaranteed to approach the distribution from
which the sequence is drawn

• Let’s try an example:

CV C
CV V
CV CCV
CV CV C
CV CV
CV V CV o :

C :

V :

C :

V :

V :

C :

V :C :

• Related work:

– Learning strictly piecewise distributions: Heinz and Rogers
(2010)

– Learning SL distributions over features: Heinz and Koirala
(2010)

7 Looking ahead

• Open questions:

– Learning using logic and non-string models (Strother-Garcia
et al., 2016)

– Learning using features (Chandlee et al., 2019)
– Learning URs (Hua et al., in progress)
– Learning optionality (Heinz et al., in progress)
– ...

• Alëna Aksënova’s kist package codes a lot of this in Python, available
at https://github.com/alenaks/SigmaPie

https://github.com/alenaks/SigmaPie

Jardine Grammatical inference and subregular phonology 19

References
Ao, B. (1991). Kikongo nasal harmony and context-sensitive underspecification. Linguistic Inquiry, 22(2):193–

196.

Applegate, R. B. (1972). Ineseño Chumash grammar. PhD thesis, University of California, Berkeley.

Beros, A. and de la Higuera, C. (2016). A canonical semi-deterministic transducer. Fundamenta Informaticae,
pages 431–459.

Burness, P. and McMullin, K. (2019). Efficient learning of output tier-based strictly 2-local functions. In Pro-
ceedings of the 16th Meeting on the Mathematics of Language, pages 78–90, Toronto, Canada. Association for
Computational Linguistics.

Chandlee, J. (2014). Strictly Local Phonological Processes. PhD thesis, University of Delaware.

Chandlee, J., Eyraud, R., and Heinz, J. (2015). Output strictly local functions. In Kornai, A. and Kuhlmann,
M., editors, Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 52–63, Chicago,
IL.

Chandlee, J., Eyraud, R., Heinz, J., Jardine, A., and Rawski, J. (2019). Learning with partially ordered repre-
sentations. In Proceedings of the 16th Meeting on the Mathematics of Language, pages 91–101, Toronto, Canada.
Association for Computational Linguistics.

Chandlee, J. and Heinz, J. (2018). Strictly locality and phonological maps. LI, 49:23–60.

Chomsky, N. (1965). Aspects of Theory of Syntax. Cambridge, Massachusetts: MIT Press.

de la Higuera, C. (2010). Grammatical Inference: Learning Automata Grammars. Cambridge University Press.

Engelfriet, J. and Hoogeboom, H. J. (2001). MSO definable string transductions and two-way finite-state
transducers. ACM Transations on Computational Logic, 2:216–254.

Filiot, E. and Reynier, P. (2016). Transducers, logic, and algebra for functions of finite words. ACM SIGLOG
News, 3(3):4–19.

Gold, M. E. (1967). Language identification in the limit. Information and Control, 10:447–474.

Hansen, K. and Hansen, L. (1969). Pintupi phonology. Oceanic Linguistics, 8:153–170.

Heinz, J. (2010). Learning long-distance phonotactics. LI, 41:623–661.

Heinz, J. (2018). The computational nature of phonological generalizations. In Hyman, L. and Plank, F.,
editors, Phonological Typology, Phonetics and Phonology, chapter 5, pages 126–195. De Gruyter Mouton.

Heinz, J., de la Higuera, C., and van Zaanen, M. (2016). Grammatical Inference for Computational Linguistics.
Number 28 in Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers.

Jardine Grammatical inference and subregular phonology 20

Heinz, J. and Koirala, C. (2010). Maximum likelihood estimation of feature-based distributions. In Proceedings
of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and Phonology, pages 28–37,
Uppsala, Sweden. Association for Computational Linguistics.

Heinz, J. and Lai, R. (2013). Vowel harmony and subsequentiality. In Kornai, A. and Kuhlmann, M., editors,
Proceedings of the 13th Meeting on Mathematics of Language, Sofia, Bulgaria.

Heinz, J., Rawal, C., and Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 58–64, Portland,
Oregon, USA. Association for Computational Linguistics.

Heinz, J. and Rogers, J. (2010). Estimating strictly piecewise distributions. In Proceedings of the 48th Annual
Meeting of the ACL. Association for Computational Linguistics.

Heinz, J. and Rogers, J. (2013). Learning subregular classes of languages with factored deterministic au-
tomata. In Kornai, A. and Kuhlmann, M., editors, Proceedings of the 13th Meeting on the Mathematics of Lan-
guage (MoL 13), pages 64–71, Sofia, Bulgaria. Association for Computational Linguistics.

Jardine, A., Chandlee, J., Eyraud, R., and Heinz, J. (2014). Very efficient learning of structured classes of sub-
sequential functions from positive data. In Proceedings of the 12th International Conference on Grammatical
Inference (ICGI 2014), JMLR Workshop Proceedings, pages 94–108.

Jardine, A. and Heinz, J. (2016). Learning tier-based strictly 2-local languages. Transactions of the Association for
Computational Linguistics, 4:87–98.

Jardine, A. and McMullin, K. (2017). Efficient learning of tier-based strictly k-local languages. In Drewes, F.,
Martı́n-Vide, C., and Truthe, B., editors, Language and Automata Theory and Applications, 11th International
Conference, Lecture Notes in Computer Science, pages 64–76. Springer.

McMullin, K. (2016). Tier-based locality in long-distance phonotactics: learnability and typology. PhD thesis, Uni-
versity of British Columbia.

Mielke, J. (2004). P-Base 1.95. http://137.122.133.199/jeff/pbase.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Computational Linguistics,
23(2):269–311.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and sub-regular complex-
ity. In Formal Grammar, volume 8036 of Lecture Notes in Computer Science, pages 90–108. Springer.

Strother-Garcia, K., Heinz, J., and Hwangbo, H. J. (2016). Using model theory for grammatical inference:
a case study from phonology. In Verwer, S., Menno van Zaane, n., and Smetsers, R., editors, Proceedings
of The 13th International Conference on Grammatical Inference, volume 57 of JMLR: Workshop and Conference
Proceedings, pages 66–78.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82.

	Overview
	Defining learning
	What is learning?
	Grammatical inference

	Languages and Grammars
	Formal languages
	Language classes
	Strictly local languages and grammars

	Learning SL languages
	Learning paradigm
	Learning SL grammars
	The limits of SL learning
	Connection to learning phonotactics

	Learning with strictly local automata
	Strictly local acceptors
	Learning SLFSAs

	Input-strictly local functions and learning processes
	Subsequential functions
	Input strictly local functions
	Learning input strictly local functions
	Strictly Local Distributions

	Looking ahead

