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Introduction
• What kind of functions are phonological UR-SR maps?

• Automata-theoretic characterizations have focused on
subsequentiality (Heinz and Lai, 2013; Payne, 2017; Chandlee and Heinz, 2018)

• Logical characterizations of sets provide
representation-independent complexity hypotheses

• No previous logical characterizations of functions approach
subsequentiality
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• The subregular class of input strictly local (ISL) functions
can be captured with quanti�er-free (QF) �rst order (FO)
logic

• We generalize this with least �xed-point extension of QF
functions (QFLFP)

• QFLFP o�ers recursive, output-based de�nitions of
functions

• As a proper subclass of the subsequential functions,
QFLFP is a better �t to the typology of phonological
functions
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Motivation
• Connections between logical transductions and �nite state
string transducers (FSTs): (Filiot and Reynier, 2016)

MSO = two-way FSTs
(Engelfriet and Hoogeboom, 2001)

order-preserving MSO = one-way (non-det.) FSTs
(Filiot, 2015)

• No previous characterization for deterministic FSTs
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Logical de�nitions of functions

o1 a2 b3 b4 a5 b6 n7

• Model of a string over Σ:
– D = {1, 2, ..., n} D = {1, 2, 3, 4, 5, 6, 7}

– Pσ ⊆ D for each σ ∈ Σ,o,n Pb = {3, 4, 6}

– A predecessor function p p(2) = 1, etc.
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o1 a2 b3 b4 a5 b6 n7

a2′ b3′ c4′ a5′ b6′

• A logical transduction de�nes an output structure in the
logic of the input structure (Courcelle, 1994; Courcelle et al., 2012)

a′(x)
def
= a(x)

b′(x)
def
= b(x) ∧ ¬(b(p(x))

c′(x)
def
= b(x) ∧ (b(p(x))

• b→ c / b
6



o1 a2 b3 b4 a5 b6 n7

a2′ b3′ c4′ a5′ b6′

• A logical transduction de�nes an output structure in the
logic of the input structure (Courcelle, 1994; Courcelle et al., 2012)

a′(x)
def
= a(x)

b′(x)
def
= b(x) ∧ ¬(b(p(x))

c′(x)
def
= b(x) ∧ (b(p(x))

• QF transductions capture ISL functions (Chandlee, 2014).
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• Long-distance patterns are not ISL/QF

• Iterative nasal spreading in Malay (Onn, 1980)

/mawa/→ [mãw̃ã]
o m a w a n

m ã w a

ã′(x)
def
= a(x) ∧ nasal(p(x))

a′(x)
def
= a(x) ∧ ¬nasal(p(x))

• nasal(x)
def
= m(x) ∨ ã′(x) ∨ w̃′(x)
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• Long-distance patterns are not ISL/QF

• Nasal harmony in Kikongo (Ao, 1991)
/mala/→ [mana] /makala/→ [makana]

o m a l a n

m a n a

o m a k a l a n

m a k a l a

n′(x)
def
= n(x) ∨

(
l(x) ∧ nasal(p(p(x)))

)
l′(x)

def
= l(x) ∧ ¬nasal(p(p(x)))

• nasal(x)
def
= m(x) ∨ n(x)
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• Least-�xed point logic allows:

– reference to output structures;

– de�nition of precedence from predecessor (p)

• Restriction to QF keeps the logic weak
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Least �xed point logic
• An operator on D is a function f : P(D)→ P(D)

D

X

f (X)f
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• The least �xed point of f is lfp(f ) =
⋃
iX

i, where
X0 = ∅, X i+1 = f (X i)

D

X1
X2

X3

. . .

f

f f

• If f is monotone then it has a least �xed point
X ⊆ Y ⇒ f (X) ⊆ f (Y )
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• ϕ(A, y) with a special predicate A(y) induces an operator

fϕ(X) =
{
d ∈ D

∣∣ ϕ(A, y) is satis�ed with A 7→ X, d 7→ y
}

• if A is under the scope of an even number of negations,
then fϕ is monotone

• fϕ is applied recursively until it converges on the least �xed
point (lfp)
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Example

o1 a2 b3 a4 a5 a6 c7 a8 n9

ϕ(A, y) = a(y) ∧
(
b(p(y)) ∨ A(p(y))

)
fϕ(∅) = {4} X1

fϕ({4}) = {4, 5} X2

fϕ({4, 5}) = {4, 5, 6} X3

fϕ({4, 5, 6}) = {4, 5, 6} X4 = X5 = ...
lfp(fϕ) = {4, 5, 6}
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• QFLFP is QF extended with predicates of the form[
lfp
ϕ(A, y)

]
(x)

[
lfp
a(y) ∧

(
b(p(y)) ∨ A(p(y))

)]
(x)

o1 a2 b3 a4 a5 a6 c7 a8 n9
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Iterative spreading (with blocking)
baaa 7→ bbbb
baaca 7→ bbbca
baacaba 7→ bbbcabb

b′(x)
def
= [lfp(b(y) ∨ (A(p(y)) ∧ ¬c(y)))](x)

o1 b2 a3 a4 c5 a6 b7 a8 n9

b2 b3 b4 c5 a6 b7 b8
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Long-distance agreement
cbccca 7→ cbcccb

b′(x)
def
= [lfp(b(y) ∨ A(p(y)))](x) ∧ ¬c(x)

o1 c2 b3 c4 c5 c6 a7 n8

c2 b3 c4 c5 c6 b7
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Spreading with blocking:

b′(x)
def
= [lfp(b(y) ∨ (A(p(y)) ∧¬c(y)))](x)

LD agreement:

b′(x)
def
= [lfp(b(y) ∨ A(p(y)))](x) ∧¬c(x)
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Theorem: QFLFP is subsequential
• Subsequential functions have some deterministic
�nite-state transducer (Schützenberger, 1977; Mohri, 1997)

0 1

m:m

a:a,w:w

p:p

a:ã,w:w̃

m:m
p:p

o m a w a n

m ã w̃

• We immediately know the output at each position

• This output is based on some �nite-state (=MSO) control
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• Lemma 1: For any ϕ(x) ∈ QFLFP, whether a position satis�es
ϕ(x) depends entirely on the preceding information in the
input [

lfp

(
w(y) ∨ a(y)

)
∧
(
m(y) ∨ A(p(y))

)]
(x)

o m a w a n
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• For QFLFP, reading left-to-right, we immediately know the
output at each position

w̃(x)
def
=
[
lfp

(
w(y) ∨ a(y)

)
∧
(
m(y) ∨ A(p(y))

)]
(x)

o m a w a n

m ã w̃
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• Any LFP predicate can be translated into MSO

[lfp ϕ(A, y)](x)

m
(∃X, ∀y)

[(
ϕ(X/A, y)→ X(y)

)
∧X(x)

]
• QFLFP functions are deterministic left-to-right, and have
MSO (=�nite state) control

• Thus, they are subsequential
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Conjecture: Subsequential is not QFLFP

• Keeping track of even and odd-numbered elements of a
particular type over arbitrary distances is subsequential

0 1

b : b

c : c

b : b

c : c

a : da : da : d

a : aa : aa : a

bbbbbbaaa 7→ bbbbbbddd
abbbbbaaa 7→ dbbbbbaaa

• There is likely no QFLFP de�nition for this function
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• This is a good phonological prediction of QFLFP;
functions like “odd-numbered sibilants harmonize” are not
attested.

• But, QFLFP can capture ‘local’ even/odd counting (for, e.g.,
iterative stress)

[
lfp

o (p(y)) ∨ A(p(p(y))
]
(x)

o1 a2 a3 a4 a5 a6 a7 a8 n9
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The general picture

SUBSEQ

LSUBSEQ RSUBSEQ

QFLFPpQFLFPpQFLFPp QFLFPsQFLFPsQFLFPsLOSL ROSL

ISL=QF

OSL = output strictly local functions (Chandlee, 2014; Chandlee et al., 2015)
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Conclusions & Discussion
• QFLFP ⊆ SUBSEQ is a restrictive theory for phonology
based on recursive de�nitions of local structures

• Because QFLFP ⊆ SUBSEQ, it is learnable (Oncina et al.,
1993)

• Remaining theoretical questions:
– Not likely closed under compositon

– What is an abstract de�nition of QFLFP?

– What is expressivity of QFLFPp,s?
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• Logic can be applied to non-string structures:
– Features

– Autosegmental representations

– Metrical structure

– Others?

• What do we get with two-place predicates and
QFLFP (Koser et al., AMP)?
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Conclusion
• QFLFP combines the restrictiveness of QF with the ability to
recursively reference the output structure.

• Allows us to model non-ISL phenomena such as LD
agreement and iterative spreading.

• This class of functions appears to cross-cut several
subregular classes that have been applied to the modeling
of phonological processes.

• As a subset of subsequential, it is also learnable.
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