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Introduction

◮ Autosegmental representations (ARs) are two-dimensional

representations of phonological information

H L

σ σ σ

[félàmà] ‘junction’

(Mende; Leben, 1973)

◮ Two results in this paper:

◮ Tone mapping is not MSO-definable, and thus categorically more

complex than other phonological processes
◮ ARs are FO-definable from strings, and thus are not dramatically

more expressive than strings w.r.t. well-formedness

◮ These results are obtained through logical transductions

(Courcelle, 1994; Engelfriet and Hoogeboom, 2001)
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Background

◮ What is the character of phonological generalizations?

◮ Well-formedness

blick vs. *bnick (Chomsky and Halle, 1965)
◮ Processes

write /raIt/ →[raIt]

writer /raIt+@r/ →[raIR@r]

◮ How do we best characterize cross-linguistic variation in

well-formedness patterns and processes?
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Background

◮ The computational character of phonology is (sub-)Regular:

◮ Well-formedness: sub-classes of the Regular sets

(Heinz and Idsardi, 2011, 2013; Rogers et al., 2013; McMullin and

Hansson, 2016)

◮ Processes: sub-classes of the Regular relations

(Johnson, 1972; Kaplan and Kay, 1994; Heinz and Lai, 2013; Chandlee,

2014)
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Hansson, 2016)

◮ Processes: sub-classes of the Regular relations

(Johnson, 1972; Kaplan and Kay, 1994; Heinz and Lai, 2013; Chandlee,

2014)

◮ The sub-Regular hypothesis for phonology is a strong

statement of the cognitive complexity and acquisition of

phonology

(Heinz, 2010; Rogers and Pullum, 2011; Rogers et al., 2013; Lai, 2015;

McMullin and Hansson, 2015)
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Background

◮ This hypothesis is in terms of strings

◮ Phonology has long been characterized with non-string

structures like ARs (Goldsmith, 1976; Clements, 1976, inter alia)

H L

σ σ σ

◮ There can be no ‘canonical’ string encoding for ARs

(Kornai, 1991, 1995)

◮ Modified finite-state machines of varying expressive power

(Kay, 1987; Wiebe, 1992; Bird and Ellison, 1994; Kornai, 1991, 1995)
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Background

◮ We can instead take a logical approach to ARs

(Bird and Klein, 1990; Jardine, 2014)
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Background

◮ We can instead take a logical approach to ARs

(Bird and Klein, 1990; Jardine, 2014)

◮ The Regular stringsets are exactly the monadic second-order

(MSO)-definable stringsets (Büchi, 1960; Trakhtenbrot, 1961)

◮ The Regular string functions are properly included by

MSO-definable transductions for strings

(Engelfriet and Hoogeboom, 2001; Filiot and Reynier, 2016)
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Background

◮ (Sub-)Regular hypothesis ↔ MSO-definable hypothesis

◮ The computational character of phonology is (sub-)MSO:

◮ Well-formedness: sub-classes of the MSO-definable sets

(Graf, 2010a,b; Rogers et al., 2013)

◮ Processes: sub-classes of the MSO-definable transductions

(Heinz, forthcoming; Chandlee and Lindell, forthcoming)
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◮ Well-formedness: sub-classes of the MSO-definable sets

(Graf, 2010a,b; Rogers et al., 2013)

◮ Processes: sub-classes of the MSO-definable transductions

(Heinz, forthcoming; Chandlee and Lindell, forthcoming)

◮ We can directly compare AR processes to string processes
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Tone mapping

Mende word tone (Leben, 1973; Goldsmith, 1976)
σ

︷ ︸︸ ︷
σσ

︷ ︸︸ ︷
σσσ

︷ ︸︸ ︷

kÓ H ‘war’ pÉlÉ HH ‘house’ háwámá HHH ‘waist’

mbû F ‘owl’ ngı́là HL ‘dog’ félàmà HLL ‘junction’

mbǎ R ‘rice’ nı̀ká LH ‘cow’ ndàvúlá LHH ‘sling’

8 / 34



Tone mapping

Mende word tone (Leben, 1973; Goldsmith, 1976)
σ

︷ ︸︸ ︷
σσ

︷ ︸︸ ︷
σσσ

︷ ︸︸ ︷
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HL mbû F ‘owl’ ngı́là HL ‘dog’ félàmà HLL ‘junction’

LH mbǎ R ‘rice’ nı̀ká LH ‘cow’ ndàvúlá LHH ‘sling’

◮ Words choose among 5 melodies (*HLH)

◮ Plateaus of tone appear at the right edge of the word

HHH, HLL

*LLH, *HHL

◮ Contours appear at the right edge of the word

R, LF, *RH
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*LLH, *HHL, *RH, *RHH, etc.

L H

σ

L H

σ σ

L H

σ σ σ

9 / 34



Tone mapping

Mende word tone (Leben, 1973; Goldsmith, 1976)
σ

︷ ︸︸ ︷
σσ

︷ ︸︸ ︷
σσσ

︷ ︸︸ ︷
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Tone mapping

◮ Some variation:

◮ Mende: Start with first tone and first syllable, make pairs

left-to-right
◮ Hausa: Start with last tone and last syllable, make pairs

right-to-left (Newman, 1986, 2000)

◮ Kikuyu: Associate first tone to first two syllables, then make

pairs left-to-right (Clements and Ford, 1979)

◮ All: Make pairs one-by-one until reaching some edge of the

word
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Logical transductions

◮ How does tone mapping compare to the complexity of other

phonological processes?
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Logical transductions

◮ How does tone mapping compare to the complexity of other

phonological processes?

◮ Phonological processes are MSO-definable transductions

◮ Tone mapping is not MSO-definable

◮ The following goes through:

◮ Relational models and predicate logic
◮ Logical transductions (Courcelle, 1994; Courcelle et al., 2012)

◮ A proof of the claim
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Logical transductions

Models

◮ Finite relational models

〈U;R1,R2, ...,Rk〉
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Logical transductions

Models

◮ Finite relational models

〈U;R1,R2, ...,Rk〉

◮ Strings over alphabet Σ = {a, b}:

〈{1, ..., n};<,Pa ,Pb〉

◮ Ex., abaa is

〈{1, 2, 3, 4}U ;<, {1, 3, 4}Pa , {2}Pb
〉

a b a a
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Logical transductions

Logics

◮ An atomic predicate x = y

◮ For each Ri of arity n, an atomic predicate Ri(x1, ..., xn)

◮ First-order (FO) logic defined recursively with connectives

¬,∧,∨,→ and quantifiers ∃x and ∀x

◮ Monadic second-order (MSO) logic adds set quantifiers ∃X,∀X

and unary set predicates X(x)
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Logical transductions

Logics

◮ String atomic predicates: x = y, x < y, Pa(x), Pb(x)
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◮ Ex.,
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Logical transductions

Logics

◮ String atomic predicates: x = y, x < y, Pa(x), Pb(x)

◮ Ex.,

(∀x, y)[x < y → ¬(Pb(x) ∧ Pa(y))] ∧ (∃x, y)[Pa(x) ∧ Pb(y)]

◮ This describes the set of strings anbm for n,m > 0:

ab, aab, abb, aaab, aabb, abbb, aaaab, aaabb, aabbb, ...
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Logical transductions

Logical transductions (Courcelle, 1994; Engelfriet and Hoogeboom, 2001)

〈U;R1, ...,Rk〉 → 〈V; S1, ..., Sℓ〉

◮ Interpretation of output structures in logic of the input
structures

◮ ϕdom defining domain
◮ A finite copy set C
◮ For each Si of arity n and w ∈ Cn, a formula Sw

i (x1, ..., xn) in the

logic of the input structure
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Logical transductions (Courcelle, 1994; Engelfriet and Hoogeboom, 2001)

〈U;<,Pa,Pb〉 → 〈V;<′
,Qa,Qb〉

◮ Example: τ(anbΣm)
def
= anbm+1 (ex. τ(abaa) = abbb)
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Logical transductions

Qb(x)
def
= Pb(x) ∨ (∃y)[Pb(y) ∧ y < x]

Input: a b a a

Output: a b b b

◮ Restatements of output structure in logic of the input structure

◮ MSO transductions are closed under composition (Courcelle,

1994)
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Tone mapping is not MSO-definable

◮ (Mende) tone mapping is the following transduction:

Input: Output:

a1 a2 . . . an

b1 b2
. . . bm

a1 a2 . . . an

b1 b2
. . . bm

◮ 〈U;<,Pa,Pb〉 → 〈V;<′,A,Qa,Qb〉
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◮ (Mende) tone mapping is the following transduction:

Input: Output:
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. . . bm
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◮ 〈U;<,Pa,Pb〉 → 〈V;<′,A,Qa,Qb〉
◮ Where A is the reflexive closure of:

◮ For each i < n,m, (ai, bi) ∈ A
◮ If n < m, for n ≤ i ≤ m, (an, bi) ∈ A
◮ If n > m, for m ≤ i ≤ n, (ai, bm) ∈ A
◮ If n = m, (an, bm) ∈ A
◮ Nothing else

◮ Theorem: this transduction is not MSO-definable
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Tone mapping is not MSO-definable

◮ The following transduction is not MSO-definable:

Input: Output:

a1 a2 . . . an

b1 b2
. . . bm

a1 a2 . . . an

b1 b2
. . . bm

◮ Because MSO transductions are closed under composition, it

can’t be broken down into a finite number of MSO-definable

steps

◮ This makes tone mapping more complex than other phonological

processes, which are (at most) MSO-definable

22 / 34



Discussion

Interpreting the result

◮ Is tone different? (Hyman, 2011; Jardine, 2016a)

23 / 34



Discussion

Interpreting the result

◮ Is tone different? (Hyman, 2011; Jardine, 2016a)

◮ Is tone mapping the wrong generalization? (Dwyer, 1978; Shih and

Inkelas, 2014)

23 / 34



Discussion

Interpreting the result

◮ Is tone different? (Hyman, 2011; Jardine, 2016a)
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◮ Variation in realization of tone mapping patterns is extremely

restricted (Jardine, 2016b, 2017)

◮ A full study of complexity of autosegmental tone processes is an

important goal for future work
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Discussion

The other result

◮ ARs are FO-definable from strings

◮ In terms of well-formedness, FO-statements over ARs are

equivalent to FO-statements over strings

◮ Virtually all phonological well-formedness constraints are

sub-FO (Graf, 2010b; Rogers et al., 2013)

25 / 34



Conclusion

◮ We used logical transductions to directly compare an AR

processes to string processes

◮ Tone mapping is not MSO-definable, in contrast to all other

phonological processes

26 / 34



Conclusion

◮ We used logical transductions to directly compare an AR

processes to string processes

◮ Tone mapping is not MSO-definable, in contrast to all other

phonological processes

◮ This negative result can be understood to be about language

universals: one-by-one mapping is universal, and not subject to

cross-linguistic variation

26 / 34



Conclusion

◮ We used logical transductions to directly compare an AR

processes to string processes

◮ Tone mapping is not MSO-definable, in contrast to all other

phonological processes

◮ This negative result can be understood to be about language

universals: one-by-one mapping is universal, and not subject to
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representation
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