On the Logical Complexity of Autosegmental Representations

Adam Jardine

RUTGERS

Dept. of Linguistics, Rutgers University

July 13, 2017 15th Meeting on the Mathematics of Language Queen Mary University of London

Introduction

 Autosegmental representations (ARs) are two-dimensional representations of phonological information

```
H L

\sigma \sigma \sigma

[félàmà] 'junction'

(Mende; Leben, 1973)
```

- Two results in this paper:
 - Tone mapping is not MSO-definable, and thus categorically more complex than other phonological processes
 - ARs are FO-definable from strings, and thus are not dramatically more expressive than strings w.r.t. well-formedness
- These results are obtained through logical transductions (Courcelle, 1994; Engelfriet and Hoogeboom, 2001)

Introduction

 Autosegmental representations (ARs) are two-dimensional representations of phonological information

```
H L

\sigma \sigma \sigma

[félàmà] 'junction'

(Mende; Leben, 1973)
```

• Two results in this paper:

- Tone mapping is not MSO-definable, and thus categorically more complex than other phonological processes
- ► ARs are *FO-definable* from strings, and thus are not dramatically more expressive than strings w.r.t. well-formedness
- These results are obtained through logical transductions (Courcelle, 1994; Engelfriet and Hoogeboom, 2001)

What is the character of phonological generalizations?

Well-formedness

blick vs. *bnick (Chomsky and Halle, 1965)

Processes

write /raɪt/ \rightarrow [raɪt] *writer* /raɪt+ər/ \rightarrow [raɪrər]

How do we best characterize cross-linguistic variation in well-formedness patterns and processes?

- ► The **computational** character of phonology is (sub-)*Regular*:
 - Well-formedness: sub-classes of the Regular sets (Heinz and Idsardi, 2011, 2013; Rogers et al., 2013; McMullin and Hansson, 2016)
 - Processes: sub-classes of the Regular relations (Johnson, 1972; Kaplan and Kay, 1994; Heinz and Lai, 2013; Chandlee, 2014)

► The **computational** character of phonology is (sub-)*Regular*:

- Well-formedness: sub-classes of the Regular sets (Heinz and Idsardi, 2011, 2013; Rogers et al., 2013; McMullin and Hansson, 2016)
- Processes: sub-classes of the Regular relations
 (Johnson, 1972; Kaplan and Kay, 1994; Heinz and Lai, 2013; Chandlee, 2014)
- The sub-Regular hypothesis for phonology is a strong statement of the cognitive complexity and acquisition of phonology

(Heinz, 2010; Rogers and Pullum, 2011; Rogers et al., 2013; Lai, 2015;

McMullin and Hansson, 2015)

- This hypothesis is in terms of *strings*
- Phonology has long been characterized with non-string structures like ARs (Goldsmith, 1976; Clements, 1976, inter alia)

- There can be no 'canonical' string encoding for ARs (Kornai, 1991, 1995)
- Modified finite-state machines of varying expressive power (Kay, 1987; Wiebe, 1992; Bird and Ellison, 1994; Kornai, 1991, 1995)

 We can instead take a logical approach to ARs (Bird and Klein, 1990; Jardine, 2014)

- We can instead take a logical approach to ARs (Bird and Klein, 1990; Jardine, 2014)
- The Regular stringsets are exactly the monadic second-order (MSO)-definable stringsets (Büchi, 1960; Trakhtenbrot, 1961)

- We can instead take a logical approach to ARs (Bird and Klein, 1990; Jardine, 2014)
- The Regular stringsets are exactly the monadic second-order (MSO)-definable stringsets (Büchi, 1960; Trakhtenbrot, 1961)
- The Regular string functions are properly included by MSO-definable transductions for strings

(Engelfriet and Hoogeboom, 2001; Filiot and Reynier, 2016)

- ► (Sub-)Regular hypothesis \leftrightarrow **MSO-definable hypothesis**
- The **computational** character of phonology is (sub-)**MSO**:
 - Well-formedness: sub-classes of the MSO-definable sets (Graf, 2010a,b; Rogers et al., 2013)
 - Processes: sub-classes of the MSO-definable transductions (Heinz, forthcoming; Chandlee and Lindell, forthcoming)

- ► (Sub-)Regular hypothesis \leftrightarrow **MSO-definable hypothesis**
- The **computational** character of phonology is (sub-)**MSO**:
 - Well-formedness: sub-classes of the MSO-definable sets (Graf, 2010a,b; Rogers et al., 2013)
 - Processes: sub-classes of the MSO-definable transductions (Heinz, forthcoming; Chandlee and Lindell, forthcoming)

- ► (Sub-)Regular hypothesis \leftrightarrow **MSO-definable hypothesis**
- The **computational** character of phonology is (sub-)**MSO**:
 - Well-formedness: sub-classes of the MSO-definable sets (Graf, 2010a,b; Rogers et al., 2013)
 - Processes: sub-classes of the MSO-definable transductions (Heinz, forthcoming; Chandlee and Lindell, forthcoming)
- ► We can directly compare AR processes to string processes

- Words choose among 5 melodies (*HLH)
- Plateaus of tone appear at the right edge of the word HHH, HLL
 *LLH, *HHL
- Contours appear at the right edge of the word R, LF, *RH

L	Н	L	Н	L	Η	
σ		σ	σ	σ	σ	σ

L	Н	L	Н	L	Н	
σ		σ	σ	σ	σ	σ

- Some variation:
 - Mende: Start with first tone and first syllable, make pairs left-to-right
 - Hausa: Start with *last* tone and *last* syllable, make pairs right-to-left (Newman, 1986, 2000)
 - Kikuyu: Associate first tone to first *two* syllables, then make pairs left-to-right (Clements and Ford, 1979)
- All: Make pairs one-by-one until reaching some edge of the word

How does tone mapping compare to the complexity of other phonological processes?

- How does tone mapping compare to the complexity of other phonological processes?
- Phonological processes are MSO-definable transductions
- ► Tone mapping is not MSO-definable

- How does tone mapping compare to the complexity of other phonological processes?
- Phonological processes are MSO-definable transductions
- Tone mapping is not MSO-definable
- The following goes through:
 - Relational models and predicate logic
 - ► Logical transductions (Courcelle, 1994; Courcelle et al., 2012)
 - A proof of the claim

Models

Finite relational models

 $\langle U; R_1, R_2, ..., R_k \rangle$

Models

Finite relational models

 $\langle U; R_1, R_2, ..., R_k \rangle$

• Strings over alphabet $\Sigma = \{a, b\}$:

 $\left<\{1,...,n\};<,P_a,P_b\right>$

Models

Finite relational models

$$\langle U; R_1, R_2, ..., R_k \rangle$$

• Strings over alphabet $\Sigma = \{a, b\}$:

$$\left<\{1,...,n\};<,P_a,P_b\right>$$

► Ex., *abaa* is

$$\langle \{1,2,3,4\}_U; <, \{1,3,4\}_{P_a}, \{2\}_{P_b} \rangle$$

Logics

- An atomic predicate x = y
- For each R_i of arity n, an atomic predicate $R_i(x_1, ..., x_n)$
- ▶ **First-order (FO)** logic defined recursively with connectives $\neg, \land, \lor, \rightarrow$ and quantifiers $\exists x$ and $\forall x$
- ► Monadic second-order (MSO) logic adds set quantifiers $\exists X, \forall X$ and unary set predicates X(x)

Logics

• String atomic predicates: $x = y, x < y, P_a(x), P_b(x)$

Logics

- String atomic predicates: $x = y, x < y, P_a(x), P_b(x)$
- ► Ex.,

 $(\forall x, y)[x < y \rightarrow \neg (P_b(x) \land P_a(y))] \land (\exists x, y)[P_a(x) \land P_b(y)]$

Logics

- String atomic predicates: $x = y, x < y, P_a(x), P_b(x)$
- ► Ex.,

 $(\forall x, y)[x < y \rightarrow \neg (P_b(x) \land P_a(y))] \land (\exists x, y)[P_a(x) \land P_b(y)]$

• This describes the set of strings $a^n b^m$ for n, m > 0:

 $ab, aab, abb, aaab, aabb, abbb, aaaab, aaabb, aabbb, \ldots$

$$\langle U; R_1, ..., R_k \rangle \rightarrow \langle V; S_1, ..., S_\ell \rangle$$

- Interpretation of output structures in logic of the input structures
 - φ_{dom} defining domain
 - ► A finite copy set C
 - ► For each S_i of arity *n* and $w \in C^n$, a formula $S_i^w(x_1, ..., x_n)$ in the logic of the input structure

$$\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', Q_a, Q_b \rangle$$

• Example: $\tau(a^n b \Sigma^m) \stackrel{\text{def}}{=} a^n b^{m+1}$ (ex. $\tau(abaa) = abbb)$

$$\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', Q_a, Q_b \rangle$$

• Example:
$$\tau(a^n b \Sigma^m) \stackrel{\text{def}}{=} a^n b^{m+1}$$
 (ex. $\tau(abaa) = abbb)$
• $C = \{1\}$ and

$$\begin{array}{lll} \varphi_{\mathrm{dom}} & \stackrel{\mathrm{def}}{=} & \varphi_{\mathrm{string}} \\ <'\left(x,y\right) & \stackrel{\mathrm{def}}{=} & x < y \\ Q_{a}(x) & \stackrel{\mathrm{def}}{=} & P_{a}(x) \land (\forall y) [P_{b}(y) \rightarrow x < y] \\ Q_{b}(x) & \stackrel{\mathrm{def}}{=} & P_{b}(x) \lor (\exists y) [P_{b}(y) \land y < x] \end{array}$$

Logical transductions (Courcelle, 1994; Engelfriet and Hoogeboom, 2001)

$$\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', Q_a, Q_b \rangle$$

$$C = \{1\} \text{ and } \begin{array}{c} \varphi_{\text{dom}} & \stackrel{\text{def}}{=} & \varphi_{\text{string}} \\ <'(x, y) & \stackrel{\text{def}}{=} & x < y \\ Q_a(x) & \stackrel{\text{def}}{=} & P_a(x) \land (\forall y) [P_b(y) \rightarrow x < y] \\ Q_b(x) & \stackrel{\text{def}}{=} & P_b(x) \lor (\exists y) [P_b(y) \land y < x] \\ \text{Input: } & a \rightarrow b \rightarrow a \end{array}$$

Output:
Logical transductions

Logical transductions (Courcelle, 1994; Engelfriet and Hoogeboom, 2001)

$$\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', Q_a, Q_b \rangle$$

$$\bullet C = \{1\} \text{ and } \begin{array}{c} \varphi_{\text{dom}} & \stackrel{\text{def}}{=} & \varphi_{\text{string}} \\ <'(x, y) & \stackrel{\text{def}}{=} & x < y \\ Q_a(x) & \stackrel{\text{def}}{=} & P_a(x) \land (\forall y) [P_b(y) \rightarrow x < y] \\ Q_b(x) & \stackrel{\text{def}}{=} & P_b(x) \lor (\exists y) [P_b(y) \land y < x] \\ \text{Input: } a \rightarrow b \rightarrow a \\ \text{Output: } a \rightarrow b \rightarrow a \\ \end{array}$$

Logical transductions

Logical transductions (Courcelle, 1994; Engelfriet and Hoogeboom, 2001)

$$\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', Q_a, Q_b \rangle$$

$$\blacktriangleright C = \{1\} \text{ and } \begin{array}{c} \varphi_{\text{dom}} & \stackrel{\text{def}}{=} & \varphi_{\text{string}} \\ <'(x, y) & \stackrel{\text{def}}{=} & x < y \\ Q_a(x) & \stackrel{\text{def}}{=} & P_a(x) \land (\forall y) [P_b(y) \rightarrow x < y] \\ Q_b(x) & \stackrel{\text{def}}{=} & P_b(x) \lor (\exists y) [P_b(y) \land y < x] \end{array}$$

Input:
$$(a \rightarrow b \rightarrow a \rightarrow a)$$

Output: $(a \rightarrow b \rightarrow b \rightarrow b)$

Logical transductions

$$Q_b(x) \stackrel{\text{def}}{=} P_b(x) \lor (\exists y) [P_b(y) \land y < x]$$

Input:
$$a \rightarrow b \rightarrow a \rightarrow a$$

Output:
$$a \rightarrow b \rightarrow b \rightarrow b$$

- Restatements of output structure in logic of the input structure
- MSO transductions are closed under composition (Courcelle, 1994)

$$\bullet \ \langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', A, Q_a, Q_b \rangle$$

$$\blacktriangleright \langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', A, Q_a, Q_b \rangle$$

 (Mende) tone mapping is the following transduction: Input: Output:

$$\blacktriangleright \langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', A, Q_a, Q_b \rangle$$

• Where *A* is the reflexive closure of:

- $\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', A, Q_a, Q_b \rangle$
- Where *A* is the reflexive closure of:
 - For each $i < n, m, (a_i, b_i) \in A$

- $\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', A, Q_a, Q_b \rangle$
- Where *A* is the reflexive closure of:
 - For each $i < n, m, (a_i, b_i) \in A$
 - If n < m, for $n \le i \le m$, $(a_n, b_i) \in A$

- ⟨U; <, P_a, P_b⟩ → ⟨V; <', A, Q_a, Q_b⟩
 Where A is the reflexive closure of:
 - where A is the reliexive closure of
 - For each $i < n, m, (a_i, b_i) \in A$
 - If n < m, for $n \le i \le m$, $(a_n, b_i) \in A$
 - If n > m, for $m \le i \le n$, $(a_i, b_m) \in A$

- ⟨U; <, P_a, P_b⟩ → ⟨V; <', A, Q_a, Q_b⟩
 Where A is the reflexive closure of:
 - For each $i < n, m, (a_i, b_i) \in A$
 - If n < m, for $n \le i \le m$, $(a_n, b_i) \in A$
 - If n > m, for $m \le i \le n$, $(a_i, b_m) \in A$
 - If n = m, $(a_n, b_m) \in A$

- ⟨U; <, P_a, P_b⟩ → ⟨V; <', A, Q_a, Q_b⟩
 Where A is the reflexive closure of:
 - where A is the reliexive closure of
 - For each $i < n, m, (a_i, b_i) \in A$
 - If n < m, for $n \le i \le m$, $(a_n, b_i) \in A$
 - If n > m, for $m \le i \le n$, $(a_i, b_m) \in A$
 - If n = m, $(a_n, b_m) \in A$
 - Nothing else

- $\langle U; <, P_a, P_b \rangle \rightarrow \langle V; <', A, Q_a, Q_b \rangle$
- Where *A* is the reflexive closure of:
 - For each $i < n, m, (a_i, b_i) \in A$
 - If n < m, for $n \le i \le m$, $(a_n, b_i) \in A$
 - If n > m, for $m \le i \le n$, $(a_i, b_m) \in A$
 - If n = m, $(a_n, b_m) \in A$
 - Nothing else
- Theorem: this transduction is not MSO-definable

Proof is by contradiction, comes in two parts

- Proof is by contradiction, comes in two parts
- Part 1: The following is MSO-definable: Input: Output:

MSO-definable transductions are closed under composition

- MSO-definable transductions are closed under composition
- Part 2: If tone mapping is MSO-definable, then the following is MSO-definable:

- MSO-definable transductions are closed under composition
- Part 2: If tone mapping is MSO-definable, then the following is MSO-definable:

 (a_n)

•
$$\varphi_{\text{dom}} \stackrel{\text{def}}{=} \varphi_{a^n b^m}$$

• $A(x, y) \stackrel{\text{def}}{=} \varphi_A(x, y)$

- MSO-definable transductions are closed under composition
- Part 2: If tone mapping is MSO-definable, then the following is MSO-definable:

•
$$\varphi_{\text{dom}} \stackrel{\text{def}}{=} \varphi_{a^n b^m}$$

• $A(x, y) \stackrel{\text{def}}{=} \varphi_A(x, y)$

- MSO-definable transductions are closed under composition
- Part 2: If tone mapping is MSO-definable, then the following is MSO-definable:

•
$$\varphi_{\text{dom}} \stackrel{\text{def}}{=} \varphi_{a^n b^m}$$

• $A(x, y) \stackrel{\text{def}}{=} \varphi_A(x, y)$

 $\blacktriangleright \ (\forall x \exists y) [\varphi_A(x,y)] \land (\forall x,y,z) [(\varphi_A(x,y) \land \varphi_A(x,z)) \to y = z]$

- MSO-definable transductions are closed under composition
- Part 2: If tone mapping is MSO-definable, then the following is MSO-definable:

•
$$\varphi_{dom} \stackrel{\text{def}}{=} \varphi_{a^n b^m}$$

• $A(x, y) \stackrel{\text{def}}{=} \varphi_A(x, y)$

► $(\forall x \exists y)[\varphi_A(x, y)] \land (\forall x, y, z)[(\varphi_A(x, y) \land \varphi_A(x, z)) \rightarrow y = z]$ ⊂This describes $a^n b^n$, which is not MSO-definable

The following transduction is not MSO-definable: Input: Output:

- Because MSO transductions are closed under composition, it can't be broken down into a finite number of MSO-definable steps
- This makes tone mapping more complex than other phonological processes, which are (at most) MSO-definable

Interpreting the result

► Is tone different? (Hyman, 2011; Jardine, 2016a)

- ► Is tone different? (Hyman, 2011; Jardine, 2016a)
- ► Is tone mapping the wrong generalization? (Dwyer, 1978; Shih and Inkelas, 2014)

- ► Is tone different? (Hyman, 2011; Jardine, 2016a)
- ► Is tone mapping the wrong generalization? (Dwyer, 1978; Shih and Inkelas, 2014)
- ► Are tone melodies finite? (Yli-Jyrä, 2013)

Interpreting the result

> Perhaps 'one-by-one' quality of mapping is *universal*

- Perhaps 'one-by-one' quality of mapping is universal
- ► This property is shared by all tone-mapping patterns

- > Perhaps 'one-by-one' quality of mapping is *universal*
- This property is shared by all tone-mapping patterns
- Variation in realization of tone mapping patterns is extremely restricted (Jardine, 2016b, 2017)

- Perhaps 'one-by-one' quality of mapping is universal
- This property is shared by all tone-mapping patterns
- Variation in realization of tone mapping patterns is extremely restricted (Jardine, 2016b, 2017)
- A full study of complexity of autosegmental tone processes is an important goal for future work

The other result

- ARs are FO-definable from strings
- In terms of well-formedness, FO-statements over ARs are equivalent to FO-statements over strings
- Virtually all phonological well-formedness constraints are sub-FO (Graf, 2010b; Rogers et al., 2013)

Conclusion

- We used logical transductions to directly compare an AR processes to string processes
- Tone mapping is not MSO-definable, in contrast to all other phonological processes

Conclusion

- We used logical transductions to directly compare an AR processes to string processes
- Tone mapping is not MSO-definable, in contrast to all other phonological processes
- This negative result can be understood to be about language universals: one-by-one mapping is universal, and not subject to cross-linguistic variation

Conclusion

- We used logical transductions to directly compare an AR processes to string processes
- Tone mapping is not MSO-definable, in contrast to all other phonological processes
- This negative result can be understood to be about language universals: one-by-one mapping is universal, and not subject to cross-linguistic variation
- Logical transductions are a powerful way to study phonological representation

Acknowledgments

Thanks to Jane Chandlee, Jeff Heinz, Thomas Graf, Jim Rogers, and three reviewers.

References I

- Bird, S. and Ellison, T. M. (1994). One-level phonology: Autosegmental representations and rules as finite automata. *Computational Linguistics*, 20.
- Bird, S. and Klein, E. (1990). Phonological events. *Journal of Linguistics*, 26:33–56.
- Büchi, J. R. (1960). Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathmatik, 6:66—92.
- Chandlee, J. (2014). *Strictly Local Phonological Processes*. PhD thesis, University of Delaware.
- Chandlee, J. and Lindell, S. (forthcoming). A logical characterization of strictly local functions. In Heinz, J., editor, *Doing Computational Phonology*. OUP.
- Chomsky, N. and Halle, M. (1965). Some controversial questions in phonological theory. *Journal of Linguistics*, 1(2):pp. 97–138.

References II

- Clements, G. N. (1976). *Vowel Harmony in Nonlinear Generative Phonology: An Autosegmental Model*. Bloomington: Indiana University Linguistics Club Publications.
- Clements, G. N. and Ford, K. C. (1979). Kikuyu tone shift and its synchronic consequences. *Linguistic Inquiry*, 10:179–210.
- Courcelle, B. (1994). Monadic second-order definable graph transductions: a survey. *Theoretical Computer Science*, 126:53–75.
- Courcelle, B., Engelfriet, J., and Nivat, M. (2012). *Graph structure and monadic second-order logic: A language-theoretic approach*. Cambridge University Press.
- Dwyer, D. (1978). What sort of tone language is Mende? *Studies in African Linguistics*, 9:167–208.
- Engelfriet, J. and Hoogeboom, H. J. (2001). MSO definable string transductions and two-way finite-state transducers. *ACM Transations on Computational Logic*, 2:216–254.
- Filiot, E. and Reynier, P. (2016). Transducers, logic, and algebra for functions of finite words. *ACM SIGLOG News*, 3(3):4–19.

References III

- Goldsmith, J. (1976). *Autosegmental Phonology*. PhD thesis, Massachussets Institute of Technology.
- Graf, T. (2010a). Comparing incomparable frameworks: A model theoretic approach to phonology. *University of Pennsylvania Working Papers in Linguistics*, 16(2):Article 10.
- Graf, T. (2010b). Logics of phonological reasoning. Master's thesis, UCLA.
- Heinz, J. (2010). Learning long-distance phonotactics. LI, 41:623-661.
- Heinz, J., editor (forthcoming). *Doing Computational Phonology*. Oxford: Oxford University Press.
- Heinz, J. and Idsardi, W. (2011). Sentence and word complexity. *Science*, 333(6040):295–297.
- Heinz, J. and Idsardi, W. (2013). What complexity differences reveal about domains in language. *Topics in Cognitive Science*, 5(1):111–131.
- Heinz, J. and Lai, R. (2013). Vowel harmony and subsequentiality. In Kornai, A. and Kuhlmann, M., editors, *Proceedings of the 13th Meeting* on Mathematics of Language, Sofia, Bulgaria.
References IV

- Hyman, L. (2011). Tone: Is it different? In Goldsmith, J. A., Riggle, J., and Yu, A. C. L., editors, *The Blackwell Handbook of Phonological Theory*, pages 197–238. Wiley-Blackwell.
- Jardine, A. (2014). Logic and the generative power of Autosegmental Phonology. In Kingston, J., Moore-Cantwell, C., Pater, J., and Staubs, R., editors, *Supplemental proceedings of the 2013 Meeting on Phonology* (*UMass Amherst*), Proceedings of the Annual Meetings on Phonology. LSA.
- Jardine, A. (2016a). Computationally, tone is different. *Phonology*, 33:247–283.
- Jardine, A. (2016b). *Locality and non-linear representations in tonal phonology*. PhD thesis, University of Delaware.
- Jardine, A. (2017). The local nature of tone association patterns. *Phonology*, 34:385–405.
- Johnson, C. D. (1972). Formal aspects of phonological description. Mouton.
- Kaplan, R. and Kay, M. (1994). Regular models of phonological rule systems. *Computational Linguistics*, 20:331–78.

References V

- Kay, M. (1987). Nonconcatenative finite-state morphology. In Proceedings, Third Meeting of the European Chapter of the Association for Computational Linguistics, pages 2–10.
- Kornai, A. (1991). Formal Phonology. PhD thesis, Stanford University.

Kornai, A. (1995). Formal Phonology. Garland Publication.

- Lai, R. (2015). Learnable versus unlearnable harmony patterns. *LI*, 46:425–451.
- Leben, W. R. (1973). *Suprasegmental phonology*. PhD thesis, Massachussets Institute of Technology.
- McMullin, K. and Hansson, G. O. (2015). Locality in long-distance phonotactics: evidence for modular learning. In *NELS 44, Amherst, MA*. in press.
- McMullin, K. and Hansson, G. O. (2016). Long-distance phonotactics as Tier-Based Strictly 2-Local languages. In *Proceedings of AMP 2015*.
- Newman, P. (1986). Tone and affixation in Hausa. *Studies in African Linguistics*, 17(3).

References VI

- Newman, P. (2000). *The Hausa Language: An encyclopedic reference grammar*. New Haven: Yale University Press.
- Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and sub-regular complexity. In *Formal Grammar*, volume 8036 of *Lecture Notes in Computer Science*, pages 90–108. Springer.
- Rogers, J. and Pullum, G. (2011). Aural pattern recognition experiments and the subregular hierarchy. *Journal of Logic, Language and Information*, 20:329–342.
- Shih, S. and Inkelas, S. (2014). A subsegmental correspondence approach to contour tone (dis)harmony patterns. In Kingston, J., Moore-Cantwell, C., Pater, J., and Staubs, R., editors, *Proceedings of the 2013 Meeting on Phonology (UMass Amherst)*, Proceedings of the Annual Meetings on Phonology. LSA.
- Trakhtenbrot, B. A. (1961). Finite automata and logic of monadic predicates. *Doklady Akademii Nauk SSSR*, 140:326–329.
- Wiebe, B. (1992). Modelling autosegmental phonology with multi-tape finite state transducers. Master's thesis, Simon Fraser University.

Yli-Jyrä, A. (2013). On finite-state tonology with autosegmental representations. In *Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing*, pages 90–98. Association for Computational Linguistics.