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Introduction
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◮ What kind of structures are autosegmental phonological
representations (APRs; Goldsmith, 1976)?

◮ Current conception: top-down constraints on graph structures

◮ Our result: these fundamental properties emerge from
concatenation of an alphabet of primitives (Engelfriet and
Vereijken, 1997; Courcelle et al., 2012)

◮ This makes them directly comparable to strings
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Introduction

Overview
◮ Why APRs & what are APRs

◮ Representation of APRs as labeled mixed graphs

◮ Top-down, axiomatic definition of APRs

◮ Constructive derivation of axioms from concatenation &
primitives

◮ Empirical consequences

◮ Discussion

3 / 32



APRs

◮ What are APRs?

◮ Mende (Leben, 1973; Goldsmith, 1976): fewer attested tone
combinations than possible
F, HL, HLL, HLLL, ...
*HF, *HLHL, *HHLL, *HLLH, ...

◮ Answer: tone melodies independent from syllables
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APRs
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◮ Fundamentally, APRs are:
◮ Ordered tiers of like autosegments
◮ Association lines connecting items on distinct tiers

◮ Set of valid APRs usu. definedaxiomatically(Goldsmith, 1976;
Sagey, 1986; Bird and Klein, 1990; Kornai, 1995)
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APGs
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◮ To represent APRs, we can use (simple)labeled mixed graphs

G = 〈V,E,A, ℓ〉

◮ GR(Σ)
◮ V = {0, 1, ..., n}
◮ E ⊆ P

=2(V)
◮ A ⊆ V × V
◮ ℓ : V → Σ
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APGs
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◮ To represent APRs, we can use (simple)labeled mixed graphs

G = 〈V,E,A, ℓ〉

◮ Why graphs?
◮ Graphs explicitly encode all information in APRs
◮ Deep literature on pattern matching, characterizing & learning

graph sets, graph transductions, etc. (Courcelle et al., 2012;
Engelfriet and Hoogeboom, 2001; López et al., 2012; Ferrera,
2013, inter alia)
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APGs
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◮ To represent APRs, we can use (simple)labeled mixed graphs

G = 〈V,E,A, ℓ〉

◮ To selectwell-formedautosegmental phonological graphs
(APGs), there are two options

◮ Axiomatically (top-down approach)
◮ Constructively (bottom-up approach)
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)

X H L

σ σ σ

✖ H σ

L σ H

◮ We first define the basic autosegmental structure inAPG(Σ,T)

◮ We consider twotiers
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)
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✖ H σ
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◮ Let4 be the reflexive, transitive closure ofA

Axiom (Tier structure)
V is partitioned into two sets V0,V1 which are each totally ordered by
4. V0 and V1 are thetiers of G.
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)
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◮ Let T be a partition{Tt,Tm} onΣ

Axiom (Like tier labels)
Partition of V into tiers respects partition T onΣ

◮ Let Vm correspond toTm, likewiseVt, Tt

◮ Let’s setTm = {H,L}, Tt = {σ}
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)

X H L
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◮ Associations can only be between tiers

Axiom (Associations between tiers)
For all {x, y} ∈ E, x 64 y and y 64 y.
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)
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◮ No line crossing (Goldsmith, 1976; Hammond, 1988; Coleman
and Local, 1991)

Axiom (NCC)
For all u, v, x, y ∈ V, if {u, x}, {v, y} ∈ E and u4 v, then x4 y.
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)

X H L
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✖ H H
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◮ The Obligatory Contour Principle Leben (1973); Goldsmith
(1976); McCarthy (1986); Odden (1986)

Axiom (OCP)
For tier Vm, for all x, y ∈ Vm, (x, y) ∈ A impliesℓ(x) 6= ℓ(y).
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Axiomatic approach:APG(Σ,T) ⊂ GR(Σ)

◮ APG(Σ,T): graphs inGR(Σ) obeying these axioms

Axioms 1) Tier structure 4) NCC
2) Like tier labels 5) OCP
3) Associations between tiers

◮ These properties can all be derived from concatenation
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Constructive approach:APG(Γ) ⊂ GR(Σ)

◮ Engelfriet and Vereijken (1997); Courcelle et al. (2012): two
methods of graph concatenation:

One way is to “glue” them together, by identifying some
of their vertices. The other way is to “bridge” them (or
rather, “bridge the gap between them”), by adding edges
between their vertices. (Courcelle et al., 2012, p. 6)

◮ We define a specialized version of this machinery (using both
“gluing” and “bridging”) to generate the set of APGs
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Constructive approach:APG(Γ) ⊂ GR(Σ)

G1 = H0 L1

σ2

G2 = L3

σ4

G1 ◦ G2 = H0 L1,3

σ2 σ4
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Constructive approach:APG(Γ) ⊂ GR(Σ)

“Gluing” and“bridging”

G1 = H0 L1

σ2

G2 = L3

σ4

◮ Identify the ‘ends’ of the tiers

◮ Merge identical end nodes onVm

◮ Draw arcs between any other pair of end nodes

G1,2 = H0 L1 L3

σ2 σ4
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Constructive approach:APG(Γ) ⊂ GR(Σ)

“Gluing” and“bridging”

G1 = H0 L1

σ2

G2 = L3

σ4

G1 ◦ G2 = H0 L1,3

σ2 σ4
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Constructive approach:APG(Γ) ⊂ GR(Σ)

The identity graph

◮ Let Gλ = 〈∅, ∅, ∅, ∅〉

Theorem (Gλ is identity)
For any G∈ GR(Σ), G◦ Gλ = Gλ ◦ G = G.
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Constructive approach:APG(Γ) ⊂ GR(Σ)

Graph primitives

◮ Engelfriet and Vereijken (1997): graph sets can interpret string
sets

◮ Concatenation of symbols = concatenation of graph primitives

Definition
An alphabet of graph primitivesoverGR(Σ) is a finite setΓ of
symbols and a naming functiong : Γ → GR(Σ).

Definition
For w ∈ Γ∗, g(w)

def
=

◮ Gλ if w = λ
◮ g(u) ◦ g(γ) if w = uγ, u ∈ Γ∗, γ ∈ Γ
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Constructive approach:APG(Γ) ⊂ GR(Σ)

APG graph primitives

Definition (APG graph primitive)
ForΣ andT = {Tt,Tm}, anAPG graph primitiveis a graph
G ∈ GR(Σ) for which
a. Vt is a singleton set{vt}
b. Vm is totally ordered by4
c. All e∈ E are of the form{vm, vt}, vm ∈ Vm

Γ = {H,L,F}

g(H) = H

σ

g(L) = L

σ

g(F) = H L

σ
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Constructive approach:APG(Γ) ⊂ GR(Σ)

Graph primitives
Def. of APG prim. a.Vt = {vt}

b. 4 totally ordersVm

c. All e∈ E = {vm, vt}
for vm ∈ Vm

Γ = {H,L,F} g(H) = H

σ

g(L) = L

σ

g(F) = H L

σ

◮ APG(Γ) = {g(w)|w ∈ Γ∗}

g(HHH) g(HLL) g(LF)

H

σ σ σ

H L

σ σ σ

L H L

σ σ
. . .
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Constructive approach:APG(Γ) ⊂ GR(Σ)

APG prim. a.Vt = {vt}
b. 4 totally ordersVm

c. All e∈ E = {vm, vt}
for vm ∈ Vm

Ax. 1) Tier struct. 4) NCC
2) Tier labels 5) OCP
3) Assoc.

Theorem
Every G∈ APG(Γ) follows Ax. 1 – 5

◮ APG graph primitives have two tiers Vt and Vm and
concatenation preserves this

◮ NCC from singleton Vt
◮ OCP from merging of melody nodes

Theorem
◦ is associative over APG(Γ)

◮ Concatenation preserves tier structure; proof similar of
associativity overΓ∗
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Concatenation and empirical phenomena

◮ APG(Γ) also naturally captures facts of phonology

◮ Unbounded spreading, but no ‘unbounded contouring’

g(H) = H

σ

g(L) = L

σ

g(F) = H L

σ

◮ g(Hn) = H

σ1 σ2 . . . σn

◮ No w ∈ Γ∗ s.t. g(w) = H L H L

σ

◮ (unless added toΓ)
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Concatenation and empirical phenomena

◮ Most OCP violations at morpheme boundaries or signaled by
downstep (Hyman, 2014)

g(H) = H

σ

g(!H) = H H

σ

g(#) = #

#

◮ Adjacent Hs across boundaries (Aghem; Hyman, 2014)

g(H#H) = H # H

σ # σ

◮ Adjacent Hs tautomorphemically (Kishambaa; Odden, 1986)

g(HH) = H

σ σ

g(H!H) = H H

σ σ
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Discussion

◮ g is direct way of relating strings to APRs

◮ Cognitive interpretation: how humans relate linear speechstream
to APRs

◮ (APG(Γ), ◦) as free monoid

◮ Multi-tier representations:n-ary partitions onΣ

◮ Full feature geometry may require more structure on partition

◮ Less restrictive version w.r.t. OCP could include second
concatenation operation without ‘gluing’
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Conclusion

◮ We defined APRs asAPG(Γ) parallel to strings

◮ Maintains key properties of APRs

◮ Positive empirical implications (e.g. no unbounded contouring)

◮ Restrictivetheory of APRs (w.r.t OCP)
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PhD thesis, Università degli Studi di Pisa.

Goldsmith, J. (1976).Autosegmental Phonology. PhD thesis, Massachussets
Institute of Technology.

31 / 32



References II
Hammond, M. (1988). On deriving the Well-Formedness Condition.

Linguistic Inquiry, 19(2):319–325.

Hyman, L. (2014). How autosegmental is phonology?The Linguistic
Review, 31:363–400.

Kornai, A. (1995).Formal Phonology. Garland Publication.

Leben, W. R. (1973).Suprasegmental phonology. PhD thesis,
Massachussets Institute of Technology.
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