A Concatenation Operation to Derive Autosegmental Graphs

Adam Jardine and Jeffrey Heinz

University of Delaware

July 26 2015

Introduction

- ► What kind of structures are autosegmental phonological representations (APRs; Goldsmith, 1976)?
- ► Current conception: top-down constraints on graph structures
- Our result: these fundamental properties emerge from concatenation of an alphabet of primitives (Engelfriet and Vereijken, 1997; Courcelle et al., 2012)
- ► This makes them directly comparable to strings

Introduction

Overview

- ► Why APRs & what are APRs
- ► Representation of APRs as labeled mixed graphs
- ► Top-down, axiomatic definition of APRs
- Constructive derivation of axioms from concatenation & primitives
- Empirical consequences
- Discussion

APRs

- ► What are APRs?
- Mende (Leben, 1973; Goldsmith, 1976): fewer attested tone combinations than possible
 F, HL, HLL, HLLL, ...
 *HF, *HLHL, *HHLL, *HLLH, ...
- ► Answer: tone melodies independent from syllables

APRs

- ► Fundamentally, APRs are:
 - Ordered tiers of like autosegments
 - Association lines connecting items on distinct tiers
- Set of valid APRs usu. defined *axiomatically* (Goldsmith, 1976; Sagey, 1986; Bird and Klein, 1990; Kornai, 1995)

APGs

► To represent APRs, we can use (simple) *labeled mixed graphs*

$$G = \langle V, E, A, \ell \rangle$$

$$\mathsf{GR}(\Sigma) \mathsf{V} = \{0, 1, ..., n\} \mathsf{E} \subseteq \mathcal{P}_{=2}(V) \mathsf{A} \subseteq V \times V \mathsf{\ell} : V \to \Sigma$$

APGs

► To represent APRs, we can use (simple) labeled mixed graphs

$$G = \langle V, E, A, \ell \rangle$$

- ► Why graphs?
 - Graphs explicitly encode all information in APRs
 - Deep literature on pattern matching, characterizing & learning graph sets, graph transductions, etc. (Courcelle et al., 2012; Engelfriet and Hoogeboom, 2001; López et al., 2012; Ferrera, 2013, inter alia)

APGs

► To represent APRs, we can use (simple) labeled mixed graphs

$$G = \langle V, E, A, \ell \rangle$$

- ► To select *well-formed* autosegmental phonological graphs (APGs), there are two options
 - Axiomatically (top-down approach)
 - Constructively (bottom-up approach)

- We first define the basic autosegmental structure in $APG(\Sigma, T)$
- We consider two *tiers*

• Let \preccurlyeq be the reflexive, transitive closure of *A*

Axiom (Tier structure)

V is partitioned into two sets V_0 , V_1 which are each totally ordered by \preccurlyeq . V_0 and V_1 are the **tiers** of *G*.

• Let *T* be a partition $\{T_t, T_m\}$ on Σ

Axiom (Like tier labels)

Partition of V into tiers respects partition T on Σ

• Let V_m correspond to T_m , likewise V_t , T_t

• Let's set
$$T_m = \{H, L\}, T_t = \{\sigma\}$$

• Associations can only be between tiers Axiom (Associations between tiers) For all $\{x, y\} \in E, x \not\preccurlyeq y \text{ and } y \not\preccurlyeq y$.

 No line crossing (Goldsmith, 1976; Hammond, 1988; Coleman and Local, 1991)

Axiom (NCC)

For all $u, v, x, y \in V$, if $\{u, x\}, \{v, y\} \in E$ and $u \preccurlyeq v$, then $x \preccurlyeq y$.

The Obligatory Contour Principle Leben (1973); Goldsmith (1976); McCarthy (1986); Odden (1986)

Axiom (OCP)

For tier V_m , for all $x, y \in V_m$, $(x, y) \in A$ implies $\ell(x) \neq \ell(y)$.

- $APG(\Sigma, T)$: graphs in $GR(\Sigma)$ obeying these axioms
 - Axioms1) Tier structure4) NCC2) Like tier labels5) OCP3) Associations between tiers
- ► These properties can all be derived from concatenation

► Engelfriet and Vereijken (1997); Courcelle et al. (2012): two methods of graph concatenation:

One way is to "glue" them together, by identifying some of their vertices. The other way is to "bridge" them (or rather, "bridge the gap between them"), by adding edges between their vertices. (Courcelle et al., 2012, p. 6)

► We define a specialized version of this machinery (using both "gluing" and "bridging") to generate the set of APGs

$$G_1 = \underbrace{H_0}_{\sigma_2} \underbrace{L_1}_{\sigma_4} \qquad G_2 = \underbrace{L_3}_{\sigma_4} \qquad G_1 \circ G_2 = \underbrace{H_0}_{\sigma_2} \underbrace{L_{1,3}}_{\sigma_2} \underbrace{\sigma_4}$$

"Gluing" and "bridging"

- ► Identify the 'ends' of the tiers
- Merge identical end nodes on V_m
- Draw arcs between any other pair of end nodes

"Gluing" and "bridging"

$$G_1 = \underbrace{H_0}_{\sigma_2} \underbrace{L_1}_{\sigma_4} G_2 = \underbrace{L_3}_{\sigma_4}$$

The identity graph

• Let $G_{\lambda} = \langle \emptyset, \emptyset, \emptyset, \emptyset \rangle$

Theorem (G_{λ} is identity)

For any $G \in GR(\Sigma)$, $G \circ G_{\lambda} = G_{\lambda} \circ G = G$.

Graph primitives

- Engelfriet and Vereijken (1997): graph sets can interpret string sets
- Concatenation of symbols = concatenation of graph primitives

Definition

An alphabet of graph primitives over $GR(\Sigma)$ is a finite set Γ of symbols and a naming function $g: \Gamma \to GR(\Sigma)$.

Definition

For $w \in \Gamma^*$, $g(w) \stackrel{\text{def}}{=}$ • G_{λ} if $w = \lambda$ • $g(u) \circ g(\gamma)$ if $w = u\gamma, u \in \Gamma^*, \gamma \in \Gamma$

APG graph primitives

Definition (APG graph primitive)

For Σ and $T = \{T_t, T_m\}$, an *APG graph primitive* is a graph $G \in GR(\Sigma)$ for which

- a. V_t is a singleton set $\{v_t\}$
- b. V_m is totally ordered by \preccurlyeq

c. All $e \in E$ are of the form $\{v_m, v_t\}, v_m \in V_m$

$$\Gamma = \{H, L, F\}$$

$$g(H) = \bigoplus_{\sigma} g(L) = \bigoplus_{\sigma} g(F) = \bigoplus_{\sigma} L$$

Graph primitives

Def. of APG prim.
a.
$$V_t = \{v_t\}$$

b. \preccurlyeq totally orders V_m
c. All $e \in E = \{v_m, v_t\}$
for $v_m \in V_m$

$$\Gamma = \{H, L, F\} \quad g(H) = (H) \quad g(L) = (L) \quad g(F) = (H) \bullet (L)$$

$$\blacktriangleright \ APG(\Gamma) = \{g(w) | w \in \Gamma^*\}$$

 $g(\text{HHH}) \qquad g(\text{HLL}) \qquad g(\text{LF})$ $(H) \qquad (H) \qquad (L) \qquad (L) \qquad (H) \qquad (L) \qquad (H) \qquad$

APG prim.a.
$$V_t = \{v_t\}$$
Ax.1) Tier struct.4) NCCb. \preccurlyeq totally orders V_m 2) Tier labels5) OCPc. All $e \in E = \{v_m, v_t\}$ 3) Assoc.for $v_m \in V_m$

Theorem

Every $G \in APG(\Gamma)$ follows Ax. 1-5

- ► APG graph primitives have two tiers V_t and V_m and concatenation preserves this
- NCC from singleton V_t
- ► OCP from merging of melody nodes

Theorem

- \circ is associative over $APG(\Gamma)$
 - Concatenation preserves tier structure; proof similar of associativity over Γ*

Concatenation and empirical phenomena

- $APG(\Gamma)$ also naturally captures facts of phonology
- Unbounded spreading, but no 'unbounded contouring'

► No
$$w \in \Gamma^*$$
 s.t. $g(w) = (H + L) + (H + L)$

• (unless added to Γ)

Concatenation and empirical phenomena

 Most OCP violations at morpheme boundaries or signaled by downstep (Hyman, 2014)

$$g(\mathbf{H}) = (\mathbf{H}) \quad g(^{!}\mathbf{H}) = (\mathbf{H}) \bullet (\mathbf{H}) \quad g(\#) = (\#)$$

$$\sigma \qquad (\#)$$

► Adjacent Hs across boundaries (Aghem; Hyman, 2014)

$$g(\mathbf{H} \# \mathbf{H}) = \underbrace{\mathbf{H}}_{\sigma} \star \underbrace{\#}_{\sigma} \star \underbrace{\mathbf{H}}_{\sigma}$$

► Adjacent Hs tautomorphemically (Kishambaa; Odden, 1986)

$$g(HH) = \underbrace{H}_{\sigma \bullet \sigma} \qquad g(H^{!}H) = \underbrace{H}_{\sigma \bullet \sigma} + \underbrace{H}_{\sigma \bullet \sigma}$$

Discussion

- ► g is direct way of relating strings to APRs
- Cognitive interpretation: how humans relate linear speech stream to APRs
- $(APG(\Gamma), \circ)$ as free monoid
- Multi-tier representations: *n*-ary partitions on Σ
- ► Full feature geometry may require more structure on partition
- Less restrictive version w.r.t. OCP could include second concatenation operation without 'gluing'

Conclusion

- We defined APRs as $APG(\Gamma)$ parallel to strings
- Maintains key properties of APRs
- ► Positive empirical implications (e.g. no unbounded contouring)
- ► *Restrictive* theory of APRs (w.r.t OCP)

Acknowledgements

We thank three reviewers for their insightful comments and suggestions. Adam Jardine acknowledges support from a University of Delaware Graduate Research Fellowship.

References I

- Bird, S. and Klein, E. (1990). Phonological events. *Journal of Linguistics*, 26:33–56.
- Coleman, J. and Local, J. (1991). The "No Crossing Constraint" in autosegmental phonology. *Linguistics and Philosophy*, 14:295–338.
- Courcelle, B., Engelfriet, J., and Nivat, M. (2012). *Graph structure and monadic second-order logic: A language-theoretic approach*. Cambridge University Press.
- Engelfriet, J. and Hoogeboom, H. J. (2001). MSO definable string transductions and two-way finite-state transducers. *ACM Transations on Computational Logic*, 2:216–254.
- Engelfriet, J. and Vereijken, J. J. (1997). Context-free graph grammars and concatenation of graphs. *Acta Informatica*, 34:773–803.
- Ferrera, R. (2013). *Efficiently Listing Combinatorial Patterns in Graphs*. PhD thesis, Università degli Studi di Pisa.
- Goldsmith, J. (1976). *Autosegmental Phonology*. PhD thesis, Massachussets Institute of Technology.

References II

- Hammond, M. (1988). On deriving the Well-Formedness Condition. *Linguistic Inquiry*, 19(2):319–325.
- Hyman, L. (2014). How autosegmental is phonology? *The Linguistic Review*, 31:363–400.
- Kornai, A. (1995). Formal Phonology. Garland Publication.
- Leben, W. R. (1973). *Suprasegmental phonology*. PhD thesis, Massachussets Institute of Technology.
- López, D., Calera-Rubio, J., and Gallego-Sánchez, A.-J. (2012). Inference of k-testable directed acyclic graph languages. In *Proceedings of the 11th International Conference on Grammatical Inference (ICGI 2012)*, JMLR Workshop Proceedings.
- McCarthy, J. J. (1986). OCP effects: gemination and antigemination. *Linguistic Inquiry*, 17:207–263.
- Odden, D. (1986). On the role of the Obligatory Contour Principle in phonological theory. *Language*, 62(2):353–383.
- Sagey, E. (1986). The Representation of Features and Relations in Non-Linear Phonology. PhD thesis, Massachusetts Institute of Technology.