Logical Characterizations of Phonological Patterns

Jane Chandlee & Adam Jardine

jchandlee@haverford.edu ajardine@udel.edu

MFM Fringe Meeting May 25, 2016

Models

String model defined over immediate **successor** (\triangleleft) and some finite alphabet \triangleleft (successor) $\{a, b, ..., z\}$

 \rangle

Ex. [kamba]

$$\langle W, \triangleleft, P_a, P_b, ..., P_z \rangle$$

$$\begin{array}{l} \langle & \{1,2,3,4,5\}_W, \\ & \{(1,2),(2,3),(3,4),(4,5)\}_{\triangleleft}, \\ & \{2,5\}_a,\{1\}_k,\{3\}_m,\{4\}_p \end{array}$$

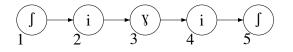
$$(k) \rightarrow (a) \rightarrow (m) \rightarrow (b) \rightarrow (a)$$

String model defined over **precedence** (<) and some finite alphabet

$$\langle W, \langle P_a, P_b, \dots, P_z \rangle$$

Ex. [∫iɣi∫]

 $\begin{array}{l} \langle & \{1,2,3,4,5\}_W, \\ & \{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}_<, \\ & \{1,5\}_{\mathbb{J}},\{2,4\}_i,\{4\}_{\mathbb{Y}}, \end{array} \right. \rangle$



< (precedence)

Logical statements

By $\mathcal{X} = \{x, y, ..., z, x_1, x_2, ...\}$ we refer to some set of variables. We define the syntax of FO^{\triangleleft} , or first order logic for \triangleleft string models, recursively as in Def. 1. This explicitly defines the range of constraints we can write in FO^{\triangleleft} .

Definition 1 (Syntax of FO^{\triangleleft}) A statement φ is in FO^{\triangleleft} iff one of the following holds:

• $\varphi = a(x)$ for some a in the alphabet bet	• $\varphi = \psi_1 \lor \psi_2$ for some $\psi_1, \psi_2 \in FO^{\triangleleft}$
• $\varphi = x \triangleleft y$	• $\varphi = \psi_1 \rightarrow \psi_2$ for some $\psi_1, \psi_2 \in$
• $\varphi = \neg(\psi)$ for some $\psi \in FO^{\triangleleft}$	FO^{\triangleleft}

- $\varphi = \neg(\psi)$ for some $\psi \in FO^{\triangleleft}$
- $\varphi = (\psi_1 \wedge \psi_2)$ for some $\psi_1, \psi_2 \in$ FO^{\triangleleft}

•
$$\varphi = (\forall x_1, x_2, ..., x_n)[\psi]$$
 for some $\psi \in FO^{\triangleleft}$

•
$$\varphi = (\exists x_1, x_2, ..., x_n)[\psi]$$
 for some $\psi \in FO^{\triangleleft}$

No other statement is in FO^{\triangleleft} *.*

We omit parentheses when their interpretation is clear.

For some \triangleleft string model \mathcal{W} whose set of positions is W, let $S : \mathcal{X} \to W$ be a function assigning variables to positions in W. The semantics of FO^{\triangleleft} is defined by how \mathcal{W} can satisfy a statement $\varphi \in FO^{\triangleleft}$, written $\mathcal{W} \models \varphi$.

Definition 2 (Semantics of FO^{\triangleleft}) A word W satisfies φ , written $W \models \varphi$, when φ is a statement prefixed with a quantifer and one of the following holds:

- $\varphi = (\forall x_1, x_2, ..., x_n)[\psi]$ and $\mathcal{W}, S \models \psi$ for all assignments S mapping x_1, x_2, \ldots, x_n to positions in W
- $\varphi = (\exists x_1, x_2, ..., x_n)[\psi]$ and $\mathcal{W}, S \models \psi$ for some assignment S mapping x_1, x_2, \dots, x_n to positions in W

where $W, S \models \varphi$ (W satisfies φ given a particular assignment S) is defined as follows:

- $\mathcal{W}, S \models a(x) \text{ iff } S(x) \in P_a \text{ in } \mathcal{W}$
- $\mathcal{W}, S \models x \triangleleft y \text{ iff } (S(x), S(y)) \in \triangleleft \text{ in } \mathcal{W}$
- $\mathcal{W}, S \models \neg \varphi$ iff \mathcal{W}, S does not satisfy φ
- $\mathcal{W}, S \models \varphi \lor \psi$ iff $\mathcal{W}, S \models \varphi$ or $\mathcal{W}, S \models \psi$
- $\mathcal{W}, S \models \varphi \land \psi$ iff $\mathcal{W}, S \models \neg(\neg \varphi \lor \neg \psi)$
- $\mathcal{W}, S \models \varphi \rightarrow \psi$ iff $\mathcal{W}, S \models \neg \varphi \lor \psi$

For a more thorough introduction, see Enderton (1972).

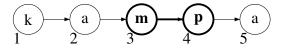
S (assignment function) semantics of FO^{\triangleleft} $\mathcal{W} \models \varphi$ (satisfaction)

 \mathcal{X} (set of variables) syntax of FO^{\triangleleft}

Examples

• *NC

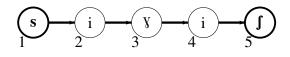
$$\begin{split} nasal(x) &\equiv m(x) \lor n(x) \lor \ldots \lor \mathbf{y}(x) \\ voiceless(x) &\equiv p(x) \lor t(x) \lor \ldots \lor k(x) \\ \varphi_{*\mathrm{NC}} &= \forall (x,y) [(x \lhd y \land nasal(x)) \to \neg voiceless(y)] \end{split}$$



 $\varphi_{*_{NC}}$ is not true for an S where S(x) = 3 and S(y) = 4

• *s... \int using $FO^{<}$

$$\begin{split} +AntSib(x) &\equiv s(x) \lor z(x) \lor ts(x) \\ -AntSib(x) &\equiv \mathfrak{f}(x) \lor \mathfrak{z}(x) \lor \mathfrak{t}\mathfrak{f}(x) \\ \varphi_{*\mathrm{s...\mathfrak{f}}} &\equiv (\forall x, y)[(x < y \land +AntSib(x)) \to \neg -AntSib(y)] \end{split}$$



• Post-nasal voicing with graph transductions (Engelfriet and Hoogeboom, 2001)

$$mp(x) \equiv p(x) \land (\exists y)[m(y) \land y \triangleleft x]$$

Node formulae

$$\begin{aligned} \varphi^0_a(x) &\equiv a(x) & \varphi^0_b(x) &\equiv b(x) \lor mp(x) \\ \varphi^0_m(x) &\equiv m(x) & \varphi^0_p(x) &\equiv p(x) \land \neg mp(x) \end{aligned}$$

Edge formula

$$\varphi_a^0(x) \equiv a(x)$$

$$g$$

$$(k) \rightarrow (a) \rightarrow (m) \rightarrow (p) \rightarrow (a)$$

$$\tau(g)$$

$$\tau(g)$$

$$(k) \rightarrow (a) \rightarrow (m) \rightarrow (b) \rightarrow (a)$$

$$1^0 \qquad 2^0 \qquad 3^0 \qquad 4^0 \qquad 5^0$$

4

References

- Coleman, J. and Local, J. (1991). The "No Crossing Constraint" in autosegmental phonology. *Linguistics and Philosophy*, 14:295–338.
- Courcelle, B., Engelfriet, J., and Nivat, M. (2012). *Graph structure and monadic second-order logic: A language-theoretic approach.* Cambridge University Press.
- de Lacy, P. (2011). Markedness and faithfulness constraints. In Oostendorp, M. V., Ewen, C. J., Hume, E., and Rice, K., editors, *The Blackwell Companion to Phonology*. Blackwell.
- Enderton, H. (1972). A mathematical introduction to logic. Academic Press.
- Engelfriet, J. and Hoogeboom, H. J. (2001). MSO definable string transductions and two-way finite-state transducers. *ACM Transations on Computational Logic*, 2:216–254.
- Graf, T. (2010). Logics of phonological reasoning. Master's thesis, University of California, Los Angeles.
- Heinz, J. (2007). *The Inductive Learning of Phonotactic Patterns*. PhD thesis, University of California, Los Angeles.
- Heinz, J. (2009). On the role of locality in learning stress patterns. Phonology, 26:303–351.
- Heinz, J. (2010). Learning long-distance phonotactics. Linguistic Inquiry, 41:623-661.
- Heinz, J. (2014). Culminativity times harmony equals unbounded stress. In van der Hulst, H., editor, *Word Stress: Theoretical and Typological Issues*, chapter 8. Cambridge University Press, Cambridge, UK.
- Heinz, J., Rawal, C., and Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics*, pages 58–64, Portland, Oregon, USA. Association for Computational Linguistics.
- Hopcroft, J., Motwani, R., and Ullman, J. (2006). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley, third edition.
- Jardine, A. (2016). *Locality and non-linear representations in tonal phonology*. PhD thesis, University of Delaware.
- Lai, R. (2015). Learnable versus unlearnable harmony patterns. *Linguistic Inquiry*, 46:425–451.
- Leben, W. R. (1973). Suprasegmental phonology. PhD thesis, Massachussets Institute of Technology.
- McMullin, K. and Hansson, G. O. (to appear). Long-distance phonotactics as Tier-Based Strictly 2-Local languages. In *Proceedings of the Annual Meeting on Phonology 2015*.
- McNaughton, R. and Papert, S. (1971). Counter-Free Automata. MIT Press.
- Potts, C. and Pullum, G. K. (2002). Model theory and the content of OT constraints. *Phonology*, 19:361–393.
- Riggle, J. (2004). *Generation, Recognition, and Learning in Finite State Optimality Theory*. PhD thesis, UCLA.
- Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive and sub-regular complexity. In *Formal Grammar*, volume 8036 of *Lecture Notes in Computer Science*, pages 90–108. Springer.
- Rogers, J. and Pullum, G. (2011). Aural pattern recognition experiments and the subregular hierarchy. *Journal* of Logic, Language and Information, 20:329–342.