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1. Introduction

In this paper, we investigate the question: What kind of functions are tone processes? Seg-
mental phonology has been characterized as being subsequential, meaning that segmental
processes can be described with deterministic finite-state transducers (Mohri 1997, Heinz
and Lai 2013, Heinz 2018). In fact, segmental phonology has been shown to be overwhelm-
ingly local, meaning output strings are determined based solely on contiguous substrings
of bounded length k either in the input (Input Strictly Local) or in the output (Ouput Strictly
Local) (Chandlee 2014, Chandlee et al. 2014, 2015).

However, Jardine (2016a) establishes that tone exhibits many patterns that are more
computationally complex than this bound, by giving a number of examples of unbounded
circumambient (UC) patterns, in which triggers or blockers can be arbitrarily far away
on either side of any target or span thereof. An example is unbounded tone plateauing
(UTP) in Luganda (Hyman and Katamba 2010) where H(igh) tones on either side of an
unbounded span of toneless tone-bearing units (TBUs) form a single H-toned plateau. As
Jardine (2016a) discusses, UC processes like UTP are not only non-local but also non-
subsequential.

A yet unanswered question, then, is: what is a computational characterization of tonal
processes that is both restrictive but also sufficiently expressive to capture UC patterns? We
answer this question by extending the melody-local phonotactic grammars of ? to processes
and show that most tonal processes are input melody-local (IML) functions. The IML class
is restrictive in that its functions can be computed using deterministic finite-state automata,
which can only make one decision with respect to the output at any step of the computation.
Crucially, however, the IML computing finite state machines are distinct from those that can
compute segmental processes in the sense that they are computed by simultaneously read-
ing multiple tiers ( also cf. Rawski and Dolatian (2020)). In other words, the key to under-
standing the computational nature of tonal processes is local, deterministic computations
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over an autosegmental-style representation. Furthermore, a subsequential computation of
UTP-type of complex tone processes strengthens the hypothesis that phonological patterns
are subregular Heinz and Lai (2013). This also promises to make progress in understanding
non-subsequential segmental processes that have been uncovered in subsequent work (e.g.,
in McCollum et al. 2020).

This paper is structured as follows: §2 presents the theoretical and empirical back-
ground of the paper; §3 introduces the Input Melody Local (IML) functions and §4 presents
the Finite State Transducers used to compute the IML functions. §5 presents a brief empir-
ical survey of IML functions, §6 discusses the findings and §7 concludes.

2. Background

2.1 Subsequentiality

The notion of subsequentiality (Schützenberger 1977, Frougny and Sakarovitch 1993,
Mohri 1997) is a measure of computational complexity for which deterministic compu-
tation is a defining property. A computation is said to be deterministic when at any point
in the process of reading an input, there is only one decision the computing machine can
make with respect to the output.

As a hypothesis for phonology, subsequentiality can intuitively be thought of as restrict-
ing phonological processes to only have bounded look-ahead. As Heinz and Lai (2013)
and Jardine (2016a) note, this makes it similar to (but slightly less restrictive) than Wilson
(2003, 2006)’s generalization that spreading is myopic. The subsequential hypothesis for
phonology is attractive because it excludes a number of pathologies from the predicted ty-
pology (Heinz 2018) and the subsequential class of functions has proven learnability prop-
erties (Oncina et al. 1993). In other words, determinism is a strong property for a theory of
phonology.

However, as Jardine (2016a) shows, there are a number of tone processes that are non-
subsequential, because they require information that can be unboundedly far away from the
target in both directions. In other words, non-subsequential processes require an unbounded
look-ahead (in both directions) to see whether or not a second trigger or blocker is present
before the process applies. A prominent example is UTP, which is illustrated as it is found
in Luganda in (1).

(1) UTP in Luganda (Hyman and Katamba 2010, Jardine 2020)
a. /kitabo/ [kitabo] ‘book’ LLL
b. /mutéma/ [mutéma] ‘chopper’ LHL
c. /kisikı́/ [kisikı́] ‘log’ LLH
d. /mutéma+bisikı́/ [mutémá+bı́sı́kı́] ‘log choper’ LHHHHH
e. *[mutéma+bisikı́] *LHLLLH

In Luganda, any span of unspecified TBUs in between two H tones become H. As Jardine
(2016a) shows, this is non-deterministic as any unspecified TBU must know if there is a
H tone both to the right and to the left—and furthermore, that these triggers can appear
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unboundedly far to the left or the right. Jardine (2016a) shows that there are a number
of examples of non-subsequential UTP processes in tone. (Furthermore, McCollum et al.
(2020) give examples of non-subsequential segmental processes.)

The goal of the present paper is to use representation to deterministically capture these
processes that are non-deterministic over strings by introducing the notion of melody, an
idea that leverages the autosegmental theoretic insights that non-local tone processes on
the timing tier are local over the tonal tier (Goldsmith 1976, Odden 1994).

2.2 Melody Locality

A great number of segmental phonotactics are local, in a computational sense of only being
evaluated within a fixed window (Heinz 2007, 2009, 2010). Formally, constraints that are
local in this sense are referred to as strictly local (SL; McNaughton and Papert 1971, Rogers
and Pullum 2011). This notion of locality has been extended, inspired by autosegmental
notions, to a formal notion of a tier (TSL; Heinz et al. 2011), which has been successfully
applied to representing and learning long-distance segmental phonotactics (Jardine 2016b,
McMullin and Hansson 2019).

However, Jardine (2020) shows that this notion of a tier is insufficient for representing
tonal phonotactics. Instead, he proposes melody-local (ML) grammars based on principles
of autosegmental phonology (Goldsmith 1976). ML grammars enforce SL contraints both
on the surface string and the melody of the string, where the melody is a tier-like structure
that assumes the Obligatory Contour Principle (OCP) (Leben 1978, McCarthy 1986, Odden
1986, 1988).

Jardine (2020) derives the melody in ML grammars with a melody function as follows.
The melody function (defined in (2)) recursively applies to each span of tonally-specified
TBUs, and returns a single H or L until no span of H or L toned TBU is left. It then takes
the empty string (i.e λ , a string of length 0) as its final input and outputs an empty string
(nothing). This function can be thought of as enforcing the OCP, retaining only one tone
in a sequence of adjacent identical tones. It is also close in spirit to Heinz et al. (2011)’s
‘erasing’ function in that the melody function erases all but one in a sequence of adjacent
like-tones on the melody tier.

(2) Melody Function (Adapted from Jardine (2020))

mel(w) def
=

{
λ if w = λ ,
mel(v)σ if w = vσn, v ̸= uσ for some u ∈ Σ∗

The function in (2) reads as follows: if mel( ) applies to a string w, when w (henceforth,
timing tier string) is an empty string (i.e λ ), the mel( ) function outputs an empty string;
but when w equals vσn, where v is a variable representing a substring of any sequence and
combination of tone symbols (e.g: LHH), and σn is one with a uniform n sequence of Ls
or Hs, the function outputs the σn part of the input as a single σ . Applying iteratively,
the function breaks up v into another substring of the form vσn and goes through the steps
described above again until there is no substring left to break up into yet smaller substrings.
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Crucially, σn has to contain all and only the like-symbols (either Hs or Ls but not both)
in a given unbroken stretch. An example is shown in (3) below, with each bolded symbol
representing σ , the output of the melody function applying to the σn substring. In the
example, w = HHHLLLHHL:

(3) Melody Function Derivation

mel(HHHLLLHHL) = mel(HHHLLLHH)L
= mel(HHHLLL)HL
= mel(HHH)LHL
= mel(λ )HLHL
= HLHL

As in autosegmental phonology, the tier output by the the melody function is represented
separately from that of the timing tier. The timing tier strings and the newly derived melody
tier strings are conjunctively monitored by ML grammars via markedness-like constraints
that ban some substrings from the grammar. To capture UTP in Luganda, for example, one
simply only needs to posit a constraint *HLH on the melody tier that forbids a sequence of
L-toned TBUs in between two H TBUs (Jardine 2020).

We can now import this idea directly into the study of functions to posit a deterministic,
local theory of tone processes based on melodies.

3. Input Melody Local Functions

To achieve the need to extend subsequentiality to non-subsequential processes, we intro-
duce the input melody local (IML) functions, which use insights from Jardine’s ML gram-
mars, but differ from the latter in that IML are functions computed locally on the input, in
parallel to the input strictly local (ISL) functions of Chandlee (2014), Chandlee and Heinz
(2018). The locality aspect of these functions means that they can only see a finite number
of symbols at any given time on both the melody and timing tiers. The significant difference
between IML functions and ISL functions is that IML functions operate over two inputs:
the timing tier string itself and the melody tier derived from the application of the melody
tier to that string.

To give an example, UTP in Luganda can be thought of as a function that maps input
strings and output strings of L- and H-toned TBUs such that any span of input Ls in between
two Hs is converted to a span of Hs.1

(4) a. LHLLLL 7→ LHLLLL
b. LHLLLH 7→ LHHHHH

It is this single-string function that is non-subsequential, for the reasons stated above. How-
ever, we can equally view this function as operating over two input strings—the original

1For now, we abstract away from underspecification of TBUs for tone; we return to this in the discussion
section.
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input string and the melody tier derived by applying the melody function to that string. An
example from UTP is shown in (5).

(5) Schematization of an IML representation of UTP

Input

{
mel(w) L H L H
w L H L L L H

Out put
{

output L H H H H H

Note that no matter how big the number of Ls between the Hs on the timing tier gets, the
number of characters in the melody will still have a fixed HLH sequence. As we show
below, this guarantees that UTP can be computed locally over the melody.

We now give a more rigorous defintion of IML based on automata theory.

4. Deterministic Multi-tier Finite State Transducers

Subsequential functions are computed by deterministic finite state transducers (FSTs)
(Schützenberger 1977). We define the IML functions in terms of deterministic multi-tape
FSTs (DM-FSTs), an automaton which takes input strings and computes output strings (a
transducer) but in which the machine has access to multiple input strings (called a tape),
each read by an independent read head. As shown this below, these machines can describe
strictly more functions than traditional FSTs, while maintaining the restrictive property of
determinism. For a thorough discussion of local DM-FSTs and their application to various
phonological domains, see Rawski and Dolatian (2020).

Formally, a two-tape FST is a tuple T =⟨Σ,Γ,Q,q0,qF ,∆,ω⟩ where:

• Σ and Γ are the input and output alphabets, respectively

• Q is the finite set of states; q0 ∈ Q is the single initial state (i.e where the computa-
tion begins), and qF ⊆ Q is the set of final or accepting states (i.e where successful
computations end);

• ∆ ⊆ Q× (Σ∪ λ )× (Σ∪ λ )×Γ∗×Q is the finite set of transitions. We represent a
transition as q → X |Y : Z → r, which means that when the transducer is in state q and
the next input symbol is X on the melody tape and Y on the timing tape, the machine
goes to state r and outputs Z. If X or Y is λ , this means that the read head on that
tape does not move during that step.

In this paper, we assume that Σ = {⋊,H, L,⋉} and Γ = {H, L}, where ⋊ and ⋉ are
special word-beginning and word-end markers that we assume only occur in the beginning
and the end of strings.

For IML functions, we need exactly two tapes. An example two-tape FST that computes
UTP is is given in Fig. 1, and a derivation for the example input/output map in (5) is given
in Table 1.

To ensure that a two-tape machine is deterministic, we add the following restriction:
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⋊|⋊ : λ L|L:L

H|H:H

λ |L:L

⋉|⋉ : λ

H|H:H

λ |H:H

H|L:HH

λ |L:H

λ |H:H

⋉|⋉ : λ

L|L : λ

⋉|λ :L

λ |L:L

λ |⋉ : λ

Figure 1: A 2-tape DM-FST for UTP.

(6) Properties of a two-tape DM-FST

a. For any transition on X |Y , at least X or Y is not λ ; i.e., both input symbols
cannot be empty strings).

b. For any two transitions on X1|Y1 and X2|Y2 out of the same state, it must be the
case that either X1 ̸= X2 ̸= λ or Y1 ̸=Y2 ̸= λ ; i.e., transitions cannot differ only
by replacing λ .

Restriction (6a) avoids non-determinism by disallowing moves in the machine without
moves on the tape, and (6b) avoids nondeterminism introduced by two transitions of the
form λ |H and H|H, for example.

Finally, we define a functional version of melody-locality by restricting ourselves to
two-tape DMFSTs whose states keep track of local windows on the melody tier and timing
tier.

(7) Definition of IML functions
A j,k-IML function f is a function from Σ∗ to Γ∗ such that f (w) is computed by
a two-tape DM-FST such that: 1) its input tapes are mel(w) and w, respectively,
for any string; and 2) each state of the machine corresponds to the previous j− 1
symbols on the first tape and the previous k−1 on the second tape, respectively.
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That is, an IML function is one that is computed deterministically over a string and its
melody and where at any point in the computation, the output is determined entirely by the
j−1 symbols in the input and the k−1 symbols in the input, respectively.

The DM-FST in Fig. 1 derives the UTP process. Consider the underlying sequence of
TBUs LHLLLH, whose derived melody is LHLH. A full derivation of the process is shown
in Table 1 below. Each row in that table represents a step in the derivation. Information to
the left of the double line in the table indicates the current state of the machine at the given
step; information to the right indicates the action specified in the machine given that state.
Specifically, the cells in the Melody and Timing columns indicate the current position of
the read heads in the input. The ‘ j-win.’ column indicates the current window of j symbols
on the melody tier ending on the current symbol in the read head, and the ‘k-win.’ indicates
the parallel window of k symbols on the timing tier. Together, the q, X |Y and r columns
indicate the current state the machine is in, the transition it takes (i.e. what the machine
reads on the Melody and Timing tier), and the state it moves to, respectively. Z column is
the output of each step in the computation.

The Table in 1 reads as follows: as a first step in the computation, the machine starts
out in state 0 where it reads the boundary symbols on both tapes (i.e. ⋊|⋊), outputs nothing
(i.e. λ ) and moves to state 1. While in state 1, it reads Ls on both tapes, faithfully outputs
L and moves to state 2. It then reads Hs on both tapes, outputs H and move to state 3; this
state 3 means that the machine has seen the first trigger. Next, the machine moves again
on both tapes, reading Ls and outputing λ , while moving to state 4. Outputting λ means
the machine is waiting to see whether the second H trigger is coming down the line. For
this purpose, the machine, now in state 4 reads H on the melody and L on the timing tapes.
Now that the machine has seen the second H trigger, it knows that the L it previously saw
on the timing tier as well as the current L have to be output as Hs, which is exactly what
it does by outputting HH and moving to state 6. From this point until an H is encountered
on the timing tier, every L the machine sees on the timing is output as H, which is why the
machine’s read-heads only oves on the timing tier and not on the melody, while looping
twice in state 6. In step 7, the machine eventually encounters an H on the timing tier, it then
outputs it as an H and transitions back to state 3. Upon reading the right boundary symbol
on the timing tier, the machine then moves to state 7.

Now we consider the underlying tone sequence LHLLL, in which only one of the two
required triggers is present in the input and as such, UTP will not apply. Note that the
derived melody of this string is mel(LHLLL)=LHL. In such cases and as shown in Table
2, the machine proceeds in a similar way as in the derivation in Table 1. The key differ-
ence happens in step 5, where the machine reads the right boundary symbol on the melody
tier after seeing an H followed by an L on that same melody tier. At this point, the ma-
chine knows there is no other H coming down the line and from that point on the machine
only moves on the timing tier, outputting the Ls faithfully until it reads the right boundary
symbol, which marks the end of the timing tier string and thus the end of the computation.

Note that the values for j and k are, in this machine, 3 and 1, respectively, and that the
DM-FST meets the criteria for an IML function given above. Thus, UTP can be modeled
with an IML function.
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Step q Melody Timing j-win. k-win. X |Y r Z
1. 0 ⋊ LHLH⋉ ⋊ LHLLLH⋉ ⋊ ⋊|⋊ 1 λ

2. 1 ⋊ L HL⋉ ⋊ L HLLLH⋉ L L|L 2 L
3. 2 ⋊L H LH⋉ ⋊L H LLLH⋉ LH H H|H 3 H
4. 3 ⋊LH L H⋉ ⋊LH L LLH⋉ LHL L L|L 4 λ

5. 4 ⋊LHL H ⋉ ⋊LHL L LH⋉ HLH L H|L 6 HH
6. 6 ⋊LHL H ⋉ ⋊LHLL L H⋉ HLH L λ |L 6 H
7. 6 ⋊LHL H ⋉ ⋊LHLLL H ⋉ HLH H H|H 3 H
8. 3 ⋊LHLH ⋉ ⋊LHLLLH ⋉ LH⋉ ⋉ ⋉|⋉ 7 λ

End 7 LHHHHH

Table 1: Derivation of ⟨LHLH,LHLLLH⟩ → LHHHHH.

Step q Melody Timing j-win. k-win. X |Y r Z
1. 0 ⋊ LHL⋉ ⋊ LHLLL⋉ ⋊ ⋊|⋊ 1 λ

2. 1 ⋊ L HL⋉ ⋊ L HLLL⋉ L L|L 2 L
3. 2 ⋊L H L⋉ ⋊L H LLL⋉ LH H H|H 3 H
4. 3 ⋊LH L ⋉ ⋊LH L LL⋉ LHL L L|L 4 λ

5. 4 ⋊LHL ⋉ ⋊LH L LL⋉ LHL L ⋉|L 5 L
6. 5 ⋊LHL ⋉ ⋊LHL L L⋉ LHL L λ |L 5 L
7. 5 ⋊LHL ⋉ ⋊LHLL L ⋉ LHL L λ |L 5 L
8. 5 ⋊LHL ⋉ ⋊LHLLL ⋉ HL⋉ λ λ |⋉ 7 λ

End 7 LHLLL

Table 2: Derivation of ⟨LHL, LHLLL⟩ → LHLLL.

5. Brief Empirical Survey of IML functions

IML functions can compute long distance processes like the UTP as well as local phonolog-
ical processes. In this section, we show how IML captures local and long distance processes
in tone, giving analyses of bounded tone shift in Rimi to represent the former and that of an
unbounded tone spread in Ndebele to exemplify the latter. IML functions cover most tone
processes, but for reasons of space, we limit ourselves to these two. Also, we do not give
the full DM-FSTs for these processes and limit the exposition to the derivation tables that
show the fragment of each DM-FST necessary for performing the computation.

5.1 Bounded Tone Shift in Rimi

In Rimi, H tone shifts one-step to the right (Meyers 1997) as shown in the examples in (8)
below where the underlined vowel represents the position the tone shifted from. The Rimi
function is shown in (9).
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(8) Tone Shift in Rimi (Meyers 1997)

a. /rá-mu-ntu/ → [ra-mú-ntu] ‘of a person’
b. /u-púm-a/ → [u-pum-á] ‘to go away’

(9) Tone Shift in Rimi

a. f (⟨HL,HLLL⟩) = LHLL
b. f (⟨LHL,LHL⟩) = LLH

The Rimi function is computed by a DM-FST with the properties in 6. A sample deriva-
tion is given in Table 3. The input HLLL is surrounded by domain delimiters (boundary
symbols) as ⋊HLLL⋉ for the timing tier. In a first step, ⋊HLLL⋉ will be fed to the melody
function, which will return ⋊HL⋉. The derivation in Table 3 shows how the 2-tape DM-
FST of Rimi takes ⟨HL,HLLL⟩ and outputs LHLL.

Step q Melody Timing j-win. k-win. X |Y r Z
1. 0 ⋊ HL⋉ ⋊ HLLL⋉ ⋊ ⋊ ⋊|⋊ 1 λ

2. 1 ⋊ H L⋉ ⋊ H LLL⋉ H ⋊H λ |H 3 λ

3. 3 ⋊ H L⋉ ⋊H L LL⋉ H HL λ |L 4 LH
4. 4 ⋊ H L⋉ ⋊HL L L⋉ H LL λ |L 4 L
5. 4 ⋊ H L⋉ ⋊HLL L ⋉ H LL λ |L 4 L
6. 4 ⋊ H L⋉ ⋊HLLL ⋉ H L⋉ λ |⋉ 5 λ

7. 5 ⋊H L ⋉ ⋊HLLL ⋉ L L⋉ L|λ 5 λ

8. 5 ⋊HL ⋉ ⋊HLLL ⋉ ⋉ L⋉ ⋉|λ 5 λ

End 5 LHLL

Table 3: Rimi derivation of ⟨HL, HLLL⟩ → LHLL.

As can be seen in the derivation, the primary job of the machine is to output an input H
on the timing tier to the subsequent TBU. This can be seen in steps 2 and 3 of the derivation,
in which an input H is initially output as λ to ‘wait’ to see if there is a subsequent TBU
to shift to and then, in step 3 upon seeing a following L, outputting these two TBUs are
output as a LH sequence, ‘shifting’ the input H one TBU to the right. Note that the machine
only moves on the timing tier at this point. This is because the Rimi tone shift being a local
process, it does not need the look-ahead option provided by a scan of the melody. (The
last steps of the derivation simply move the melody read-head to the end of the tape.) Note
that Rimi is IML because this machine satisfies all the properties in (6), notably that the
machine computes deterministically with j- and k-windows of size 1 and 2, respectively.

5.2 Unbounded Tone Spread in Ndebele

In Ndebele (Bantu, Zimbabwe) H tone spreads unboundedly to any number of TBUs until
the antepenultimate syllable (Sibanda 2004, Hyman 2011) as shown in (10); (11) gives the
pattern’s function. Note that the unbounded spreading targets tonally unspecified TBUs,
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but for simplicity purposes, those tonally unspecified TBUs are represented with Ls. Fur-
thermore, the domain of spreading is the phrase, meaning the boundary symbols mark the
edges of the phrase. The Ndebele function examplified in (11) is only defined for inputs
with a single H tone, for the sake of focusing on the unbounded spreading nature of the
function.

(10) Ndebele Tone Spread (adapted from Hyman 2011)

a. /ú-ku-hlek-a/ → [ú-kú-hlek-a] ‘to laugh’
b. /ú-ku-hlek-is-a/ → [ú-kú-hlé k-is-a] ‘to amuse (make laugh)’
c. /ú-ku-hlek-is-an-a/ → [ú-kú-hlé k-ı́s-an-a] ‘to amuse each other’

(11) Ndebele function examples

a. f (⟨HL,HLLLLL⟩) = HHHHLL
b. f (⟨L,LLLLLL⟩) = LLLLLL

This function is IML, as shown by the derivation in Table 4. In intuitive terms, following
a high tone the Ndebele DM-FST outputs every low tone as high except for the last two,
which it keeps track of by ‘waiting’ two inputs to the right before it outputs a symbol for
an input L.

Step q Melody Timing j-win. k-win. X |Y r Z
1. 0 ⋊ HL⋉ ⋊ HLLLL⋉ ⋊ ⋊ ⋊|⋊ 1 λ

2. 1 ⋊ H L⋉ ⋊ H LLLL⋉ ⋊H ⋊H H|H 3 H
3. 3 ⋊H L ⋉ ⋊H L LLL⋉ HL HL L|L 4 λ

4. 4 ⋊H L ⋉ ⋊HL L LL⋉ HL LL λ |L 5 λ

5. 5 ⋊H L ⋉ ⋊HLL L L⋉ HL LL λ |L 5 H
6. 5 ⋊H L ⋉ ⋊HLLL L ⋉ HL LL λ |L 5 H
7. 5 ⋊HL ⋉ ⋊HLLLL ⋉ HL LL ⋉|⋉ 6 LL
End 6 HHHLL

Table 4: Ndebele derivation of ⟨HL,HLLLL⟩ → HHHLL.

This ‘waiting’ occurs in steps 4 and 5, in which the machine reads in L TBUs without
outputting anything. Now in step 5, the machine has transitioned to state 5, meaning it has
not only seen an H but also has waited enough (in two counts) to make sure the two symbols
following the H on the timing tape are not the penult and the ultima, respectively. When
the machine reads an L on the timing tape while staying put on the melody tape, When
it sees the end of the string in step 7, it outputs two Ls and transitions to the accepting
state 7. These final two Ls compensate for the waiting (λ outputs) in steps 3 and 4, which
guarantee that the penult and final TBUs in the domain will never be spread onto. In this
way, unbounded spreading can be computed by keeping track of a local window on both
the melody and the timing tier, and is thus IML.
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6. Discussion and Future Research

In this section, we discuss how IML functions and autosegmental phonology compare on
one hand and how IML functions distinguish between attested long distance processes and
the logically possible yet unattested processes.

As they are inspired by autosegmental phonology, IML functions share many properties
with the latter. Firstly, IML functions employ the idea of independent timing and melody
tiers. However, instead of representing associations between units on these tiers, the rela-
tionship between the melody and timing tiers in IML functions is indirect, as the former is
derived from the latter through the melody function.

As a result, the well-formedness proposed in autosegmental phonology (Goldsmith
1976:p.48) are derived in IML functions through the operation of the melody function.
For example, the no-crossing constraint is emergent as a byproduct of the melody function
and the determinism of the IML functions. Because subsequentiality requires that symbols
be read from one end going in one direction toward the opposite end, only two movement
instructions are available to the read-head on each of the tapes of the corresponding DM-
FST: no movement/stay put and move to the subsequent symbol. With these two movement
instructions, a read-head can not go back in the opposite direction to read the symbol that
precedes an already read symbol. As a result, there can never be cases (say, in a left subse-
quential function) where a symbol following the current symbol, say on the timing tier, is
read at the same time as the symbol that precedes the last read symbol on the melody tier.

Given IML functions’ ability to characterize complex phonological processes in tone,
it is only logical to ask the question as to whether they also predict the existence of pat-
terns we don’t otherwise see in phonology. We make the following conjectures about the
nature of IML functions. First, they do not compute non-regular functions, such as the ma-
jority rules (Baković 2000) and midpoint pathology (Eisner 1997) that can be constructed
in OTP. We argue that this is likely true due to the fact that DM-FSTs are finite-state,
and furthermore are deterministic. Additionally, while even multi-tape FSTs can capture a
range of patterns (Rawski and Dolatian 2020), we conjecture that the IML functions are
still sub-regular, meaning that the restriction to deterministic machines is still meaningful.
This is due to the restricted nature of the melody tape, namely that it must be derived via
the melody function from the timing tape. However, we leave it to future work to formal-
ize with proofs the expressivity of the machines we have outlined here. Another avenue
for such research would be the logical approach to comparing representations outlined in
Strother-Garcia (2019) and Oakden (2020).

We have shown that the subsequentiality hypothesis for phonology is tenable given an
enriched representation, which highlights the fact that representation matters in phonology.
However, there is much further work to be done. First, while this paper has given some
examples of tone processes that can be modeled with IML functions, a more comprehensive
survey is the subject of ongoing work (Mamadou ms.).

Second, this paper has focused on patterns in which tones are associated to TBUs in the
underlying representation. Futher work should reconcile the representations used here and
those used for processes like those seen in the Manding languages (e.g., Mende), which
are usually analyzed as not having an underlying association and there is a basic tone-TBU
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algorithm that link the symbols on the two tiers. Another representational question is one of
underspecification. Like Jardine (2020), we have abstracted away from analyses in which,
for example, surface L-toned TBUs are underlyingly unspecified for tone (as in Luganda).
As Jardine shows, there are various ways to modify the mel function to accommodate
representations with unspecified TBUs. Interested readers are referred to that paper for
further details.

Finally, the subsequentiality hypothesis is not limited to tone, raising the question of
whether the class of IML functions includes non-tonal phonological processes. IML func-
tions are trivially adaptable to segmental processes, one only needs to replace tone symbols
in the current alphabet with the symbols relevant to the segmental process in question, say
a feature. However, a challenge with using features comes from cases of vowel harmony
where the harmonizing feature only spreads onto vowels with specific (other) features.
While giving a definite analysis for vowel harmony is beyond the scope of this paper, a
tentative solution would be to allow interacting features to have a shared melody tier. This
will also help keep the number of input tiers for the IML functions to two.

7. Conclusion

In this paper, we proposed and defined a new class of functions, the IML functions, which
rely on an enriched representation made of a timing tier and the derived melody tier. We
gave evidence that the class is descriptively adequate for tonal phonology by analyzing
several tone patterns representing a range of processes with varying levels of complexity,
including but not limited to unbounded circumambient processes. This class allows for the
strong and testable phonological hypothesis that a phonological process must be subse-
quential over a string of TBUs and/or its derived melody. Future work will focus on the
abstract characterization of IML functions and on how to apply them to a wider range of
empirical examples.
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