Efficient Learning of Tier-based Strictly k-Local languages

Adam Jardine Kevin McMullin
Rutgers University
University of Ottawa
(6) RUTGERS

The 11th International Conference on Language and Automata Theory and Applications

Umeå University, Umeå, Sweden

March 6, 2017

Overview

- The Tier-based Strictly k-Local (TSL ${ }_{k}$) languages are formal languages where dependencies hold independent of some set of 'ignored' symbols
- TSL_{k} argued to be a close approximation of attested linguistic sound patterns
- We introduce the Tier-based k-Strictly Local Inference Algorithm (k TSLIA)
- Identifies TSL_{k} languages in quadratic time; size of sample necessary for identification is bounded by a constant
- We do this by proving new properties about TSL languages that allow the learner to discover which symbols can(not) be ignored

Part 1 (of 2):

- Introduce and motivate TSL_{k} languages
- Identify learning paradigm

Some Notation

- Σ is alphabet; $\rtimes, \ltimes \notin \Sigma$ are boundary symbols
- For $w \in \Sigma^{*}, u$ is a k-factor of w if $\rtimes w \ltimes=v_{1} u v_{2}$ and $|u|=k$.

$$
\operatorname{fac}_{k}(w) \stackrel{\text { def }}{=} \begin{array}{ll}
\{u \mid u \text { is a } k \text {-factor of } \rtimes w \ltimes\} & \text { if }|\rtimes w \ltimes|>k \\
& \begin{array}{l}
\\
\\
\text { otherwise }
\end{array}
\end{array}
$$

Some Notation

- Σ is alphabet; $\rtimes, \ltimes \notin \Sigma$ are boundary symbols
- For $w \in \Sigma^{*}, u$ is a k-factor of w if $\rtimes w \ltimes=v_{1} u v_{2}$ and $|u|=k$.

$$
\operatorname{fac}_{k}(w) \stackrel{\text { def }}{=} \begin{array}{ll}
\{u \mid u \text { is a } k \text {-factor of } \rtimes w \ltimes\} & \text { if }|\rtimes w \ltimes|>k \\
& \begin{array}{l}
\\
\text { otherwise }
\end{array}
\end{array}
$$

- $\mathrm{fac}_{3}(a b b b a)=\{\rtimes a b, a b b, b b b, b b a, b a \ltimes\}$

Some Notation

- Σ is alphabet; $\rtimes, \ltimes \notin \Sigma$ are boundary symbols
- For $w \in \Sigma^{*}, u$ is a k-factor of w if $\rtimes w \ltimes=v_{1} u v_{2}$ and $|u|=k$.

$$
\begin{array}{rlr}
\operatorname{fac}_{k}(w) \stackrel{\text { def }}{=} & \begin{array}{ll}
\{u \mid u \text { is a } k \text {-factor of } \rtimes w \ltimes\} & \text { if }|\rtimes w \ltimes|>k \\
& \{\rtimes w \ltimes\}
\end{array} & \text { otherwise }
\end{array}
$$

- $\mathrm{fac}_{3}(a b b b a)=\{\rtimes a b, a b b, b b b, b b a, b a \ltimes\}$
- Extends straightforwardly to $\mathrm{fac}_{k}(L)$ for set $L \subseteq \Sigma^{*}$
- fack $_{k}(L)$ computed in time linear in $\|L\|$

The Strictly k-Local Languages

- The Strictly k-Local $\left(\mathbf{S L}_{k}\right)$ languages [MP71, RHF $^{+}$13] model 'local' dependencies

$$
R \subseteq \operatorname{fac}_{k}\left(\Sigma^{*}\right)
$$

- The language is the set of strings that contain no banned k-factors

$$
L(R) \stackrel{\text { def }}{=}\left\{w \in \Sigma^{*} \mid \mathrm{fac}_{k}(w) \cap R=\emptyset\right\}
$$

The Strictly k-Local Languages

- The Strictly k-Local $\left(\mathbf{S L}_{k}\right)$ languages [MP71, RHF $^{+}$13] model 'local' dependencies

$$
R \subseteq \operatorname{fac}_{k}\left(\Sigma^{*}\right)
$$

- The language is the set of strings that contain no banned k-factors

$$
L(R) \stackrel{\text { def }}{=}\left\{w \in \Sigma^{*} \mid \mathrm{fac}_{k}(w) \cap R=\emptyset\right\}
$$

- $R=\{\rtimes a b\} ; a b b b a \notin L(R), b a b a b \in L(R)$

The Tier-based Strictly k-Local Languages

- The TSL_{k} languages [HRT11] generalize SL_{k} languages with a tier $T \subseteq \Sigma$ over which R is evaluated
- All symbols in $\Sigma-T$ ignored

$$
\begin{gathered}
\Sigma=\{a, b\}, T=\{b\}, R=\{b b b\} \\
a b b b a \quad, a b b a a a b a \quad, a b a a a b a
\end{gathered}
$$

The Tier-based Strictly k-Local Languages

- The TSL_{k} languages [HRT11] generalize SL_{k} languages with a tier $T \subseteq \Sigma$ over which R is evaluated
- All symbols in $\Sigma-T$ ignored

$$
\begin{array}{r}
\Sigma=\{a, b\}, T=\{b\}, R=\{b b b\} \\
a b b b a \quad, a b b a a a b a \quad, a b a a a b a
\end{array}
$$

The Tier-based Strictly k-Local Languages

- The TSL_{k} languages [HRT11] generalize SL_{k} languages with a tier $T \subseteq \Sigma$ over which R is evaluated
- All symbols in $\Sigma-T$ ignored

$$
\Sigma=\{a, b\}, T=\{b\}, R=\{b b b\}
$$

$a b b b a \notin L, \quad$ abbaaaba $\notin L, \quad$ abaaaba $\in L$

The Tier-based Strictly k-Local Languages

- More formally, TSL_{k} grammar is $G=\left\langle T, R \subseteq \operatorname{fac}_{k}\left(T^{*}\right)\right\rangle$

$$
\begin{array}{rlr}
\operatorname{erase}_{T}(w) \stackrel{\text { def }}{=} & \operatorname{erase}_{T}(u) \cdot \sigma & \text { if } w=u \sigma, u \in \Sigma^{*}, \sigma \in T \\
& \operatorname{erase}_{T}(u) & \text { if } w=u \sigma, u \in \Sigma^{*}, \sigma \notin T
\end{array}
$$

The Tier-based Strictly k-Local Languages

- More formally, TSL_{k} grammar is $G=\left\langle T, R \subseteq \operatorname{fac}_{k}\left(T^{*}\right)\right\rangle$

$$
\begin{array}{rlr}
\operatorname{erase}_{T}(w) \stackrel{\text { def }}{=} & \operatorname{erase}_{T}(u) \cdot \sigma & \text { if } w=u \sigma, u \in \Sigma^{*}, \sigma \in T \\
& \operatorname{erase}_{T}(u) & \text { if } w=u \sigma, u \in \Sigma^{*}, \sigma \notin T
\end{array}
$$

- If $\Sigma=\{a, b\}, T=\{b\}, \operatorname{erase}_{T}(a b b a a a b a)=b b b$
- The language is the set of strings that contain no banned k-factors after erasing all non-tier symbols

$$
L(G) \stackrel{\text { def }}{=}\left\{w \mid \operatorname{fac}_{k}\left(\operatorname{erase}_{T}(w)\right) \cap R=\emptyset\right\}
$$

Linguistic relevance of SL_{k} and TSL_{k}

- SL_{k} and TSL_{k} languages nontrivially model phonotactics; speakers' knowledge of how sounds are used to form words in their language [Hei10, Hei11, HRT11]
- English $=\{$ shrimp, blink, bork, flump, $\ldots\}$
- $\mathrm{sr} \in R_{\text {English }}$ (srimp, srit, $\ldots \notin$ English)

Linguistic relevance of SL_{k} and TSL_{k}

- Finnish [Nev10, Odd94]
pöütä-nä 'table-ESS'
ulko-ta 'outside-ABL'
vä̈kkärää-nä ‘pinwheel-ESS’
pappi-na 'priest-ESS'

Linguistic relevance of SL_{k} and TSL_{k}

- Finnish [Nev10, Odd94]
pöütä̈-nä 'table-ESS' $\underline{\text { ulk }} \underline{\underline{o}-t \underline{a}}$ 'outside-ABL'
vä̈kkärä-nä 'pinwheel-ESS' pappi-na 'priest-ESS'

Linguistic relevance of SL_{k} and TSL_{k}

- Finnish [Nev10, Odd94]
pöütä̈-nä̈ 'table-ESS' $\underline{\text { ulk }} \underline{\underline{o}-t \underline{a}}$ 'outside-ABL'
vä̈kkärä-nä 'pinwheel-ESS' pappi-ná 'priest-ESS'

- äa $\in R_{\text {Finnish }}$: päppi-na \notin Finnish

Linguistic relevance of SL_{k} and TSL_{k}

- Tiers are language-specific:
Turkish: Vowels [CS82]

Finnish: Vowels except $\{\mathrm{i}, \mathrm{e}\} \quad$ [Rin75]
Sundanese: $\{1, \mathrm{r}\} \quad$ [Coh92]
Latin:
$\{1, \mathrm{r}, \mathrm{m}, \mathrm{g}\}$
[Cse10]
Samala: $\quad\{\mathrm{s}, \mathrm{J}\}$
[RW04]
Koorete: $\quad\left\{\mathrm{s}, \int, \mathrm{b}, \mathrm{r}, \mathrm{g}, \mathrm{d}\right\}$
[MH16]

Learning goal

- For a given Σ and k the set of grammars $\langle T, R\rangle$ is finite
- Thus learnable via enumeration [Gol67]
- Is there a smarter, efficient learner?

Learning paradigm

- 'Efficient learning' means exact identification in the limit in polynomial time and data [dlH97]
- A characteristic sample I_{C} for a language L for an algorithm A is a finite set such that for all $I \supseteq I_{C}$ of $L, L=L(A(I))$
- Goal is A that
- identifies L if I contains I_{C} for L
- runs in time polynomial in $\|I\|$ for any input I
- $\left\|I_{C}\right\|$ for any TSL_{k} language L is polynomial in the size of its grammar

Learning paradigm

- Such an A exists for TSL 2 which runs in $\|I\|^{4}$ time [JH16]
- We present an A for any k which runs in $\|I\|^{2}$ time

Part 2 (of 2):

- Define canonical TSL ${ }_{k}$ grammar
- Show two properties of T and $\Sigma-T$ for canonical grammar
- Show how algorithm learns using these properties

Canonical TSL_{k} grammar

Definition (Canonical $T S L_{k}$ grammar)

A $T S L_{k}$ grammar $G=\langle T, R\rangle$ is canonical iff for any $T S L_{k}$ grammar $G^{\prime}=\left\langle T^{\prime}, R^{\prime}\right\rangle, L(G)=L\left(G^{\prime}\right)$ and $G \neq G^{\prime}$ implies $T \subset T^{\prime}$.

Canonical TSL_{k} grammar

Definition (Canonical $T S L_{k}$ grammar)

A $T S L_{k}$ grammar $G=\langle T, R\rangle$ is canonical iff for any $T S L_{k}$ grammar $G^{\prime}=\left\langle T^{\prime}, R^{\prime}\right\rangle, L(G)=L\left(G^{\prime}\right)$ and $G \neq G^{\prime}$ implies $T \subset T^{\prime}$.

- $\Sigma=\{a, b\}$

$$
\begin{aligned}
& G_{1}=\left\langle T_{1}=\{a, b\}, R_{1}=\{\rtimes b b, b b b, b b \ltimes, a b b, b b a, b a b\}\right\rangle \\
& G_{2}=\left\langle T_{2}=\{b\}, \quad R_{2}=\{\rtimes b b, b b b, b b \ltimes\}\right\rangle \\
& L\left(G_{1}\right)=L\left(G_{2}\right)=\{\lambda, a, a a, b a, a b, a a a, a a b, a b a, b a a, \ldots\}
\end{aligned}
$$

Canonical TSL_{k} grammar

Definition (Canonical $T S L_{k}$ grammar)

A $T S L_{k}$ grammar $G=\langle T, R\rangle$ is canonical iff for any $T S L_{k}$ grammar $G^{\prime}=\left\langle T^{\prime}, R^{\prime}\right\rangle, L(G)=L\left(G^{\prime}\right)$ and $G \neq G^{\prime}$ implies $T \subset T^{\prime}$.

- $\Sigma=\{a, b\}$

$$
\begin{aligned}
& G_{1}=\left\langle T_{1}=\{a, b\}, R_{1}=\{\rtimes b b, b b b, b b \ltimes, a b b, b b a, b a b\}\right\rangle \\
& G_{2}=\left\langle T_{2}=\{b\}, \quad R_{2}=\{\rtimes b b, b b b, b b \ltimes\}\right\rangle \\
& L\left(G_{1}\right)=L\left(G_{2}\right)=\{\lambda, a, a a, b a, a b, a a a, a a b, a b a, b a a, \ldots\}
\end{aligned}
$$

Properties of canonical grammar

Lemma (The ' R tier member lemma')
If $G=\langle T, R\rangle$ is a canonical $T S L_{k}$ grammar, then for all $\sigma \in T$ which appear in R, there is at least one $v_{1} \sigma v_{2} \in R$ such that $v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G))$.

- Intuition: Otherwise, σ plays no role in determining language

Properties of canonical grammar

Lemma (The ' R tier member lemma')
If $G=\langle T, R\rangle$ is a canonical $T S L_{k}$ grammar, then for all $\sigma \in T$ which appear in R, there is at least one $v_{1} \sigma v_{2} \in R$ such that $v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G))$.

- Intuition: Otherwise, σ plays no role in determining language
- Example:

$$
G=\langle T=\{a, b\}, R=\{b a b\}\rangle
$$

Properties of canonical grammar

Lemma (The ' R tier member lemma')
If $G=\langle T, R\rangle$ is a canonical $T S L_{k}$ grammar, then for all $\sigma \in T$ which appear in R, there is at least one $v_{1} \sigma v_{2} \in R$ such that
$v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G))$.

- Intuition: Otherwise, σ plays no role in determining language
- Example:

$$
\begin{aligned}
& G=\langle T=\{a, b\}, R=\{b a b\}\rangle \\
& a b a b a \notin L(G), \text { but } a b b a \in L(G)
\end{aligned}
$$

Properties of canonical grammar

Lemma (The ' R tier member lemma')
If $G=\langle T, R\rangle$ is a canonical $T S L_{k}$ grammar, then for all $\sigma \in T$ which appear in R, there is at least one $v_{1} \sigma v_{2} \in R$ such that
$v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G))$.

- Intuition: Otherwise, σ plays no role in determining language
- Example:

$$
\begin{aligned}
& G=\langle T=\{a, b\}, R=\{b a b\}\rangle \\
& \text { ababa } \notin L(G), \text { but } a b b a \in L(G)
\end{aligned}
$$

$$
G^{\prime}=\left\langle T=\{a, b\}, R^{\prime}=\{\rtimes b b, b b b, b b \ltimes, a b b, b b a, b a b\}\right\rangle
$$

Properties of canonical grammar

Lemma (The ' R tier member lemma')
If $G=\langle T, R\rangle$ is a canonical $T S L_{k}$ grammar, then for all $\sigma \in T$ which appear in R, there is at least one $v_{1} \sigma v_{2} \in R$ such that
$v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G))$.

- Intuition: Otherwise, σ plays no role in determining language
- Example:

$$
\begin{aligned}
& G=\langle T=\{a, b\}, R=\{b a b\}\rangle \\
& \text { ababa } \notin L(G), \text { but } a b b a \in L(G)
\end{aligned}
$$

$$
G^{\prime}=\left\langle T=\{a, b\}, R^{\prime}=\{\rtimes b b, b b b, b b \ltimes, a b b, b b a, b a b\}\right\rangle
$$ $a b a b a, a b b a \notin L\left(G^{\prime}\right)$

Properties of canonical grammar

Lemma (The ' R tier member lemma')

If $G=\langle T, R\rangle$ is a canonical $T S L_{k}$ grammar, then for all $\sigma \in T$ which appear in R, there is at least one $v_{1} \sigma v_{2} \in R$ such that
$v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G))$.

- Intuition: Otherwise, σ plays no role in determining language
- Example:

$$
\begin{aligned}
& G=\langle T=\{a, b\}, R=\{b a b\}\rangle \\
& \text { ababa } \notin L(G), \text { but } a b b a \in L(G)
\end{aligned}
$$

$$
G^{\prime}=\left\langle T=\{a, b\}, R^{\prime}=\{\rtimes b b, b b b, b b \ltimes, a b b, b b a, b a b\}\right\rangle
$$ $a b a b a, a b b a \notin L\left(G^{\prime}\right)$

$$
\begin{aligned}
& G^{\prime \prime}=\left\langle T^{\prime}=\{b\}, R^{\prime \prime}=\{\rtimes b b, b b b, b b \ltimes\}\right\rangle \\
& L\left(G^{\prime}\right)=L\left(G^{\prime \prime}\right)!
\end{aligned}
$$

Properties of canonical grammar

Lemma (The 'non-tier member lemma')
For a canonical $T S L_{k}$ grammar G, the following hold iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$

Properties of canonical grammar

Lemma (The 'non-tier member lemma')
For a canonical $T S L_{k}$ grammar G, the following hold iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$

- $\Sigma=\{a, b, c\}, G=\langle T=\{b, c\}, R=\{b b b\}\rangle$

Properties of canonical grammar

Lemma (The 'non-tier member lemma')
For a canonical $T S L_{k}$ grammar G, the following hold iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$

- $\Sigma=\{a, b, c\}, G=\langle T=\{b, c\}, R=\{b b b\}\rangle$ $a b b a, a b a b a \in L(G)$

Properties of canonical grammar

Lemma (The 'non-tier member lemma')
For a canonical $T S L_{k}$ grammar G, the following hold iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$

- $\Sigma=\{a, b, c\}, G=\langle T=\{b, c\}, R=\{b b b\}\rangle$ $a b b a, a b a b a \in L(G), a b b b a \notin L(G)$,

Properties of canonical grammar

Lemma (The 'non-tier member lemma')
For a canonical $T S L_{k}$ grammar G, the following hold iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$

- $\Sigma=\{a, b, c\}, G=\langle T=\{b, c\}, R=\{b b b\}\rangle$ $a b b a, a b a b a \in L(G), a b b b a \notin L(G), a b b a, a b c b a \in L(G)$

Properties of canonical grammar

Lemma (The 'non-tier member lemma')
For a canonical $T S L_{k}$ grammar G, the following hold iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(L(G)), v_{1} v_{2} \in \operatorname{fac}_{k}(L(G))$

- $\Sigma=\{a, b, c\}, G=\langle T=\{b, c\}, R=\{b b b\}\rangle$ $a b b a, a b a b a \in L(G), a b b b a \notin L(G), a b b a, a b c b a \in L(G)$

Properties of canonical grammar

Lemma (The 'non-tier member lemma')
For a canonical $T S L_{k}$ grammar G, the following hold iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(L(G)), v_{1} v_{2} \in \operatorname{fac}_{k}(L(G))$

- $\Sigma=\{a, b, c\}, G=\langle T=\{b, c\}, R=\{b b b\}\rangle$ $a b b a, a b a b a \in L(G), a b b b a \notin L(G), a b b a, a b c b a \in L(G)$ $a b b c b a \in L(G), a b b b a \notin L(G)$

The algorithm

The non-tier member lemma: Iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(L(G)), v_{1} v_{2} \in \operatorname{fac}_{k}(L(G))$

$$
\Sigma=\{a, b, c\}, G=\langle T=\{b, c\}, R=\{b b b\}\rangle
$$

- The non-tier member lemma uniquely identifies non-tier members

The algorithm

The k TSLIA: σ from T hypothesis for which
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \mathrm{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

- Given I, the Tier-based Strictly k-Local Induction Algorithm (k TSLIA) searches through $\mathrm{fac}_{k-1}(I), \mathrm{fac}_{k}(I), \mathrm{fac}_{k+1}(I)$

The algorithm

The k TSLIA: σ from T hypothesis for which
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \mathrm{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

- Given I, the Tier-based Strictly k-Local Induction Algorithm (k TSLIA) searches through $\mathrm{fac}_{k-1}(I), \mathrm{fac}_{k}(I), \mathrm{fac}_{k+1}(I)$
- Any $\sigma \in \Sigma$ that satisfies both (a) and (b) removed from from hypothesis for T

The algorithm

The k TSLIA: σ from T hypothesis for which
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \mathrm{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

- Given I, the Tier-based Strictly k-Local Induction Algorithm (k TSLIA) searches through $\mathrm{fac}_{k-1}(I), \mathrm{fac}_{k}(I), \mathrm{fac}_{k+1}(I)$
- Any $\sigma \in \Sigma$ that satisfies both (a) and (b) removed from from hypothesis for T
- Hypothesis for R set to all remaining $\mathrm{fac}_{k}\left(T^{*}\right)$ not in $\mathrm{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b b, a b b a, b b a \ltimes$
$a b b a$	-	$\rtimes a b, a b b, b b a, b a \ltimes$	\rtimes

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b, a b b, b b a, b a \ltimes$
$a b b a$	-	$a a b, a b a, b a a$	$\rtimes a a b, a b b a, b b a \ltimes$,
$a a b a a b a a$	-		$a b a a, b a a \ltimes$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b, a b b, b b a, b a \ltimes$
$a b b a$	-	$a a b, a b a, b a a, a b b a, b b a \ltimes$	
$a a b a a b a a$	-	 	abb,$a a b a$, $a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b, a b b, b b a, b a \ltimes$
$a b b a$	-	$a a b, a b a, b a a, a b b a, b b a \ltimes$	
$a a b a a b a a$	-	 	abb,$a a b a$, $a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b, a b b, b b a, b a \ltimes$
$a b b a$	-	$a a b, a b a, b a a, a b b a, b b a \ltimes$	
$a a b a a b a a$	-	 	abb,$a a b a$, $a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b, a b b, b b a, b a \ltimes$
$a b b a$	-	$a a b, a b a, b a a, a b b a, b b a \ltimes$	
$a a b a a b a a$	-	 	abb,$a a b a$, $a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b, a b b, b b a, b a \ltimes$
$a b b a$	-	$a a b, a b a, b a a, a b b a, b b a \ltimes$	
$a a b a a b a a$	-	 	abb,$a a b a$, $a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	
$b b$	bb	$\rtimes b b, b b \ltimes$	$\rtimes b b \ltimes$
$a a a$	$a a$	\rtimes aa, aaa, $a \mathrm{a} \ltimes$	\rtimes aaa, a aa×
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	\rtimes bab, bab风
$a b b a$	-	$\rtimes a b, a b b, b b a, b a \ltimes$	$\rtimes a b b, a b b a, b b a \ltimes$
aabaabaa	-	aab, aba, baa	$\rtimes a a b, a a b a$, abaa, baa风

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes b b \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes a a a, a a a \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes b a b, b a b \ltimes$
$a b b a$	-	$\rtimes a b, a b b, b b a, b a \ltimes$	$\rtimes a b b, a b b a, b b a \ltimes$
$a a b a a b a a$	-	$a a b, a b a, b a a$	$\rtimes a a b, a a b a$,
			$a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes b b \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes a a a, a a a \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes b a b, b a b \ltimes$
$a b b a$	-	$\rtimes a b, a b b, b b a, b a \ltimes$	$\rtimes a b b, a b b a, b b a \ltimes$
$a a b a a b a a$	-	$a a b, a b a, b a a$	$\rtimes a a b, a a b a$,
			$a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes b b \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes a a a, a a a \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes b a b, b a b \ltimes$
$a b b a$	-	$\rtimes a b, a b b, b b a, b a \ltimes$	$\rtimes a b b, a b b a, b b a \ltimes$
$a a b a a b a a$	-	$a a b, a b a, b a a$	$\rtimes a a b, a a b a$,
			$a b a a, b a a \ltimes$

a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I), v_{1} v_{2} \in \operatorname{fac}_{k}(I)$

The algorithm (example)

Target: $G_{*}=\left\langle T_{*}=\{b\}, R_{*}=\{b b b\}\right\rangle, \Sigma=\{a, b\}, k=3$
Sample: $\{\lambda, a, b, b b, a a a, b a b, a b b a, a a b a a b a a\}$

String	2-factors	3-factors	4-factors
λ	$\rtimes \ltimes$		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b, b \ltimes$	$\rtimes b \ltimes$	$\rtimes b b \ltimes$
$b b$	$b b$	$\rtimes b b, b b \ltimes$	$\rtimes a a a, a a a \ltimes$
$a a a$	$a a$	$\rtimes a a, a a a, a a \ltimes$	$\rtimes b a b, b a b \ltimes$
$b a b$	$b a, a b$	$\rtimes b a, b a b, a b \ltimes$	$\rtimes a b b, a b b a, b b a \ltimes$
$a b b a$	-	$\rtimes a b, a b b, b b a, b a \ltimes$	$\rtimes a a b, a a b a$,
$a a b a a b a a$	-	$a a b, a b a, b a a$	$a b a a, b a a \ltimes$

- $T=\{b\}, R=\operatorname{fac}_{3}\left(T^{*}\right)-$ fac $_{3}(I)=\{b b b\}$

The algorithm (correctness)

The non-tier member lemma: Iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \mathrm{fac}_{k}(L(G))$
b. $\forall v_{1} \sigma v_{2} \in \mathrm{fac}_{k+1}(L(G)), v_{1} v_{2} \in \mathrm{fac}_{k}(L(G))$

The characteristic sample is a set C such that

- For every $\sigma \notin T$,
- $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L), \exists v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(C)$.
- $\forall v_{1} \sigma v_{2} \in \mathrm{fac}_{k+1}(L), \exists v_{1} v_{2} \in \mathrm{fac}_{k}(C)$.

The algorithm (correctness)

The non-tier member lemma: Iff $\sigma \notin T$:
a. $\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(L(G)), v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(L(G))$
b. $\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(L(G)), v_{1} v_{2} \in \operatorname{fac}_{k}(L(G))$

The characteristic sample is a set C such that

- For every $\rho \in T$ that appears in R, some $v_{1} v_{2} \in \operatorname{fac}_{k-1}(C)$ such that $v_{1} \rho v_{2} \in R$
- For all other $\tau \in T$, some $v_{1} \tau v_{2} \in \operatorname{fac}_{k+1}(C)$ such that $v_{1} v_{2} \in R$

The algorithm (correctness)

The characteristic sample is a set C such that

- For every $w \in \operatorname{fac}_{k}\left(T^{*}\right)-R, w \in \mathrm{fac}_{k}(C)$

The algorithm (data complexity)

- The minimum size of the characteristic sample is bounded by $\mathcal{O}\left(|\Sigma|^{k}\right)$, which is constant

The algorithm (time complexity)

- For input I and $n=\|I\|$, the k TSLIA runs in $\mathcal{O}\left(n^{2}\right)$ time
- Complexity of $\operatorname{fac}_{k(\pm 1)}(I)$ is $\mathcal{O}(n)$
- Two main steps:
a. $\underbrace{\forall v_{1} v_{2} \in \operatorname{fac}_{k-1}(I)}_{\mathcal{O}(n)}, \underbrace{v_{1} \sigma v_{2} \in \operatorname{fac}_{k}(I)}_{\mathcal{O}(n)=\mathcal{V}\left(n^{2}\right)}$
b. $\underbrace{\forall v_{1} \sigma v_{2} \in \operatorname{fac}_{k+1}(I)}_{\mathcal{O}(n)}, \underbrace{v_{1} v_{2} \in \operatorname{fac}_{k}(I)}_{\mathcal{O}(n)=\mathcal{O}\left(n^{2}\right)}$
- One more scan through $\mathrm{fac}_{k}(I)$ (to find $\left.R\right)=\mathcal{O}(n)$

Discussion and conclusion

- Given k, the k TSLIA exactly identifies any TSL_{k} language in quadratic time with a characteristic sample bounded in size by a constant w.r.t. that language's grammar
- The k TSLIA built on specific properties of elements of T and $T-\Sigma$

Discussion and conclusion

- Given k, the k TSLIA exactly identifies any TSL_{k} language in quadratic time with a characteristic sample bounded in size by a constant w.r.t. that language's grammar
- The k TSLIA built on specific properties of elements of T and $T-\Sigma$
- This result motivated by natural language phonotactics
- Is the I_{C} present in natural language data?
- How can a stochastic learner build on this k TSLIA?
- How can we extend these ideas to phonological functions (e.g. [JAKC15, CJH15])?

Thank you!

We would also like to thank Gunnar Hansson, Jane Chandlee, Jeffrey Heinz, and three anonymous reviewers for their thoughts and insights.

References I

[CJH15] Jane Chandlee, Adam Jardine, and Jeffrey Heinz, Learning repairs for marked structures, Proceedings of the 2015 Annual Meeting on Phonology, LSA, 2015.
[Coh92] Abigail Cohn, The consequences of dissimilation in Sundanese, Phonology 9 (1992), 199-220.
[CS82] George N. Clements and Engin Sezer, Vowel and consonant disharmony in Turkish, The Structure of Phonological Representations (Part II) (Harry van der Hulst and Norval Smith, eds.), Foris, Dordrecht, 1982.
[Cse10] András Cser, The -alis/aris- allomorphy revisited, Variation and change in morphology: selected papers from the 13th international morphology meeting (D. Kastovsky, F. Rainer, W. U. Dressler, and H. C. Luschützky, eds.), Philadelphia: John Benjamins, 2010, pp. 33-51.
[dlH97] Colin de la Higuera, Characteristic sets for polynomial grammatical inference, Machine Learning 27 (1997), no. 2, 125-138.

References II

[Gol67] Mark E. Gold, Language identification in the limit, Information and Control 10 (1967), 447-474.
[Hei10] Jeffrey Heinz, Learning long-distance phonotactics, LI 41 (2010), 623-661.
[Hei11] , Computational phonology part I: Foundations, Language and Linguistics Compass 5 (2011), no. 4, 140-152.
[HRT11] Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner, Tier-based strictly local constraints for phonology, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (Portland, Oregon, USA), Association for Computational Linguistics, June 2011, pp. 58-64.
[JAKC15] Adam Jardine, Angeliki Athanasopoulou, Kristian, and Peter Cole, Banyaduq prestopped nasals: Synchrony and diachrony, Oceanic Linguistics 54 (2015), 548-578.
[JH16] Adam Jardine and Jeffrey Heinz, Learning tier-based strictly 2-local languages, Transactions of the Association for Computational Linguistics 4 (2016), 87-98.

References III

[MH16] Kevin McMullin and Gunnar Ólafur Hansson, Long-distance phonotactics as Tier-Based Strictly 2-Local languages, Proceedings of the Annual Meeting on Phonology 2015 (Adam Albright and Michelle A. Fullwood, eds.), 2016.
[MP71] Robert McNaughton and Seymour Papert, Counter-free automata, MIT Press, 1971.
[Nev10] Andrew Nevins, Locality in vowel harmony, Linguistic Inquiry Monographs, no. 55, MIT Press, 2010.
[Odd94] David Odden, Adjacency parameters in phonology, Language 70 (1994), no. 2, 289-330.
[RHF $^{+}$13] James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean Wibel, Cognitive and sub-regular complexity, Formal Grammar, Lecture Notes in Computer Science, vol. 8036, Springer, 2013, pp. 90-108.
[Rin75] Catherine Ringen, Vowel harmony: Theoretical implications, Ph.D. thesis, Indiana University, 1975.
[RW04] Sharon Rose and Rachel Walker, A typology of consonant agreement as correspondence, Language 80 (2004), 475-531.

