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Overview

◮ The Tier-based Strictly k-Local (TSLk) languages are formal
languages where dependencies hold independent of some set of
‘ignored’ symbols

◮ TSLk argued to be a close approximation of attested linguistic

sound patterns

◮ We introduce the Tier-based k-Strictly Local Inference

Algorithm (kTSLIA)

◮ Identifies TSLk languages in quadratic time; size of sample

necessary for identification is bounded by a constant

◮ We do this by proving new properties about TSL languages that

allow the learner to discover which symbols can(not) be ignored

2 / 32



Part 1 (of 2):

◮ Introduce and motivate TSLk languages

◮ Identify learning paradigm
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Some Notation

◮ Σ is alphabet; ⋊,⋉ 6∈ Σ are boundary symbols

◮ For w ∈ Σ∗, u is a k-factor of w if ⋊w⋉ = v1uv2 and |u| = k.

fack(w)
def
= {u | u is a k-factor of ⋊ w⋉} if |⋊ w ⋉ | > k

{⋊w⋉} otherwise
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Some Notation

◮ Σ is alphabet; ⋊,⋉ 6∈ Σ are boundary symbols

◮ For w ∈ Σ∗, u is a k-factor of w if ⋊w⋉ = v1uv2 and |u| = k.

fack(w)
def
= {u | u is a k-factor of ⋊ w⋉} if |⋊ w ⋉ | > k

{⋊w⋉} otherwise

◮ fac3(abbba) = {⋊ab, abb, bbb, bba, ba⋉}

◮ Extends straightforwardly to fack(L) for set L ⊆ Σ∗

◮ fack(L) computed in time linear in ||L||
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The Strictly k-Local Languages

◮ The Strictly k-Local (SLk) languages [MP71, RHF+13] model

‘local’ dependencies

R ⊆ fack(Σ
∗)

◮ The language is the set of strings that contain no banned k-factors

L(R)
def
= {w ∈ Σ∗ | fack(w) ∩ R = ∅}
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The Strictly k-Local Languages

◮ The Strictly k-Local (SLk) languages [MP71, RHF+13] model

‘local’ dependencies

R ⊆ fack(Σ
∗)

◮ The language is the set of strings that contain no banned k-factors

L(R)
def
= {w ∈ Σ∗ | fack(w) ∩ R = ∅}

◮ R = {⋊ab}; abbba 6∈ L(R), babab ∈ L(R)
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The Tier-based Strictly k-Local Languages

◮ The TSLk languages [HRT11] generalize SLk languages with a

tier T ⊆ Σ over which R is evaluated

◮ All symbols in Σ− T ignored

Σ = {a, b},T = {b},R = {bbb}

abbba , abbaaaba , abaaaba
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The Tier-based Strictly k-Local Languages

◮ More formally, TSLk grammar is G = 〈T,R ⊆ fack(T
∗)〉

eraseT(w)
def
= eraseT(u) · σ if w = uσ, u ∈ Σ∗, σ ∈ T

eraseT(u) if w = uσ, u ∈ Σ∗, σ 6∈ T
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The Tier-based Strictly k-Local Languages

◮ More formally, TSLk grammar is G = 〈T,R ⊆ fack(T
∗)〉

eraseT(w)
def
= eraseT(u) · σ if w = uσ, u ∈ Σ∗, σ ∈ T

eraseT(u) if w = uσ, u ∈ Σ∗, σ 6∈ T

◮ If Σ = {a, b},T = {b}, eraseT(abbaaaba) = bbb

◮ The language is the set of strings that contain no banned

k-factors after erasing all non-tier symbols

L(G)
def
= {w | fack(eraseT(w)) ∩ R = ∅}
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Linguistic relevance of SLk and TSLk

◮ SLk and TSLk languages nontrivially model phonotactics;

speakers’ knowledge of how sounds are used to form words in

their language [Hei10, Hei11, HRT11]

◮ English = {shrimp, blink, bork, flump, ...}

◮ sr ∈ REnglish (srimp, srit, ... 6∈ English)
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Linguistic relevance of SLk and TSLk

◮ Finnish [Nev10, Odd94]

pöütä-nä ‘table-ESS’ ulko-ta ‘outside-ABL’

väkkärä-nä ‘pinwheel-ESS’ pappi-na ‘priest-ESS’
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◮ Finnish [Nev10, Odd94]

pöütä-nä ‘table-ESS’ ulko-ta ‘outside-ABL’

väkkärä-nä ‘pinwheel-ESS’ pappi-na ‘priest-ESS’

◮ T = {ö,ü,ä,o,u,a} (notice no {i, e}!)

◮ äa∈ RFinnish: päppi-na 6∈ Finnish
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Linguistic relevance of SLk and TSLk

◮ Tiers are language-specific:

Turkish: Vowels [CS82]

Finnish: Vowels except {i, e} [Rin75]

Sundanese: {l, r} [Coh92]

Latin: {l, r, m, g} [Cse10]

Samala: {s, S} [RW04]

Koorete: {s, S, b, r, g, d} [MH16]
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Learning goal

◮ For a given Σ and k the set of grammars 〈T,R〉 is finite

◮ Thus learnable via enumeration [Gol67]

◮ Is there a smarter, efficient learner?
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Learning paradigm

◮ ‘Efficient learning’ means exact identification in the limit in

polynomial time and data [dlH97]

◮ A characteristic sample IC for a language L for an algorithm A

is a finite set such that for all I ⊇ IC of L, L = L(A(I))

◮ Goal is A that
◮ identifies L if I contains IC for L
◮ runs in time polynomial in ||I|| for any input I
◮ ||IC|| for any TSLk language L is polynomial in the size of its

grammar
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Learning paradigm

◮ Such an A exists for TSL2 which runs in ||I||4 time [JH16]

◮ We present an A for any k which runs in ||I||2 time
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Part 2 (of 2):

◮ Define canonical TSLk grammar

◮ Show two properties of T and Σ− T for canonical grammar

◮ Show how algorithm learns using these properties
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Canonical TSLk grammar

Definition (Canonical TSLk grammar)

A TSLk grammar G = 〈T,R〉 is canonical iff for any TSLk grammar

G′ = 〈T ′,R′〉, L(G) = L(G′) and G 6= G′ implies T ⊂ T ′.
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G′ = 〈T ′,R′〉, L(G) = L(G′) and G 6= G′ implies T ⊂ T ′.

◮ Σ = {a, b}

G1 = 〈T1 = {a, b},R1 = {⋊bb, bbb, bb⋉, abb, bba, bab}〉
G2 = 〈T2 = {b}, R2 = {⋊bb, bbb, bb⋉}〉

L(G1) = L(G2) = {λ, a, aa, ba, ab, aaa, aab, aba, baa, ...}
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G′ = 〈T ′,R′〉, L(G) = L(G′) and G 6= G′ implies T ⊂ T ′.

◮ Σ = {a, b}

G1 = 〈T1 = {a, b},R1 = {⋊bb, bbb, bb⋉, abb, bba, bab}〉
G2 = 〈T2 = {b}, R2 = {⋊bb, bbb, bb⋉}〉
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Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language
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◮ Example:
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Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language

◮ Example:

G = 〈T = {a, b},R = {bab}〉
ababa 6∈ L(G), but abba ∈ L(G)

G′ = 〈T = {a, b},R′ = {⋊bb, bbb, bb⋉, abb, bba, bab}〉
ababa, abba 6∈ L(G′)

G′′ = 〈T ′ = {b},R′′ = {⋊bb, bbb, bb⋉}〉
L(G′) = L(G′′)!
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Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))
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For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

◮ Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉
abba, ababa ∈ L(G) , abbba 6∈ L(G), abba, abcba ∈ L(G)
abbcba ∈ L(G), abbba 6∈ L(G)
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The algorithm

The non-tier member lemma: Iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉

◮ The non-tier member lemma uniquely identifies non-tier

members
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The algorithm

The kTSLIA: σ from T hypothesis for which

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

◮ Given I, the Tier-based Strictly k-Local Induction Algorithm

(kTSLIA) searches through fack−1(I), fack(I), fack+1(I)

19 / 32



The algorithm

The kTSLIA: σ from T hypothesis for which

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

◮ Given I, the Tier-based Strictly k-Local Induction Algorithm

(kTSLIA) searches through fack−1(I), fack(I), fack+1(I)

◮ Any σ ∈ Σ that satisfies both (a) and (b) removed from from

hypothesis for T

19 / 32



The algorithm

The kTSLIA: σ from T hypothesis for which

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)
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◮ Given I, the Tier-based Strictly k-Local Induction Algorithm

(kTSLIA) searches through fack−1(I), fack(I), fack+1(I)

◮ Any σ ∈ Σ that satisfies both (a) and (b) removed from from

hypothesis for T

◮ Hypothesis for R set to all remaining fack(T
∗) not in fack(I)
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The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3
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The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}
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abaa, baa⋉

◮ T = {b}, R = fac3(T
∗)− fac3(I) = {bbb}
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The algorithm (correctness)

The non-tier member lemma: Iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

The characteristic sample is a set C such that

◮ For every σ 6∈ T ,
◮ ∀v1v2 ∈ fack−1(L), ∃v1σv2 ∈ fack(C).
◮ ∀v1σv2 ∈ fack+1(L), ∃v1v2 ∈ fack(C).
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b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

The characteristic sample is a set C such that

◮ For every ρ ∈ T that appears in R, some v1v2 ∈ fack−1(C) such

that v1ρv2 ∈ R

◮ For all other τ ∈ T , some v1τv2 ∈ fack+1(C) such that v1v2 ∈ R
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The algorithm (correctness)

The characteristic sample is a set C such that

◮ For every w ∈ fack(T
∗)− R, w ∈ fack(C)
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The algorithm (data complexity)

◮ The minimum size of the characteristic sample is bounded by

O(|Σ|k), which is constant
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The algorithm (time complexity)

◮ For input I and n = ||I||, the kTSLIA runs in O(n2) time

◮ Complexity of fack(±1)(I) is O(n)

◮ Two main steps:

a. ∀v1v2 ∈ fack−1(I)
︸ ︷︷ ︸

, v1σv2 ∈ fack(I)
︸ ︷︷ ︸

O(n) · O(n) = O(n2)
b. ∀v1σv2 ∈ fack+1(I)

︸ ︷︷ ︸
, v1v2 ∈ fack(I)
︸ ︷︷ ︸

O(n) · O(n) = O(n2)

◮ One more scan through fack(I) (to find R) = O(n)
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Discussion and conclusion

◮ Given k, the kTSLIA exactly identifies any TSLk language in

quadratic time with a characteristic sample bounded in size by a

constant w.r.t. that language’s grammar

◮ The kTSLIA built on specific properties of elements of T and

T − Σ
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quadratic time with a characteristic sample bounded in size by a

constant w.r.t. that language’s grammar

◮ The kTSLIA built on specific properties of elements of T and

T − Σ

◮ This result motivated by natural language phonotactics
◮ Is the IC present in natural language data?
◮ How can a stochastic learner build on this kTSLIA?
◮ How can we extend these ideas to phonological functions (e.g.

[JAKC15, CJH15])?
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Thank you!

We would also like to thank Gunnar Hansson, Jane Chandlee, Jeffrey

Heinz, and three anonymous reviewers for their thoughts and insights.
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