Efficient Learning of Tier-based Strictly k-Local

languages
Adam Jardine Kevin McMullin
Rutgers University University of Ottawa

) RUTGERS uOttawa

The 11th International Conference on Language and Automata
Theory and Applications
Umead University, Umea, Sweden
March 6, 2017

Overview

» The Tier-based Strictly k-Local (TSL) languages are formal
languages where dependencies hold independent of some set of
‘ignored’ symbols

» TSL; argued to be a close approximation of attested linguistic
sound patterns

» We introduce the Tier-based k-Strictly Local Inference
Algorithm (KTSLIA)

» Identifies TSL; languages in quadratic time; size of sample
necessary for identification is bounded by a constant

» We do this by proving new properties about TSL languages that
allow the learner to discover which symbols can(not) be ignored

2/32

Part 1 (of 2):
» Introduce and motivate TSL; languages

» Identify learning paradigm

3/32

Some Notation

» X is alphabet; x, X ¢ 3 are boundary symbols

» Forw € ¥*, u is a k-factor of w if xwix = vjuv, and |u| = k.

faci(w) def {u | uisak-factor of x wx} if|xwx|>k
{xwx} otherwise

4/32

Some Notation

» X is alphabet; x, X ¢ 3 are boundary symbols

» Forw € ¥*, u is a k-factor of w if xwix = vjuv, and |u| = k.

faci(w) def {u | uisak-factor of x wx} if|xwx|>k
{xwx} otherwise

» facj(abbba) = {xab,abb,bbb,bba,bax }

4/32

Some Notation

v

3} is alphabet; x, X ¢ X are boundary symbols

v

For w € ¥*, u is a k-factor of w if xwx = viuv, and |u| = k.

faci(w) def {u | uisak-factor of x wx} if|xwx|>k
{xwx} otherwise

v

facs(abbba) = {xab,abb, bbb, bba, bax }
Extends straightforwardly to facy(L) for set L C >*

v

v

facg(L) computed in time linear in ||L||

4/32

The Strictly k-Local Languages

» The Strictly k-Local (SL;) languages [MP71, RHF"13] model
‘local’ dependencies

R C facy(X")

» The language is the set of strings that contain no banned k-factors

LR) € (we o | face(w)NR = 0}

5/32

The Strictly k-Local Languages

» The Strictly k-Local (SL;) languages [MP71, RHF"13] model
‘local’ dependencies

R C facy(X")

» The language is the set of strings that contain no banned k-factors

LR) € (we o | face(w)NR = 0}

» R = {xab}; abbba ¢ L(R), babab € L(R)

5/32

The Tier-based Strictly k-Local Languages

» The TSL; languages [HRT11] generalize SL; languages with a
tier 7 C X over which R is evaluated

» All symbols in > — T ignored
Y ={a,b},T = {b},R = {bbb}

abbba , abbaaaba , abaaaba

6/32

The Tier-based Strictly k-Local Languages

» The TSL; languages [HRT11] generalize SL; languages with a
tier 7 C X over which R is evaluated

» All symbols in > — T ignored
Y ={a,b},T = {b},R = {bbb}

abbba , abbaaaba , abaaaba

6/32

The Tier-based Strictly k-Local Languages

» The TSL; languages [HRT11] generalize SL; languages with a
tier 7 C X over which R is evaluated

» All symbols in > — T ignored
Y ={a,b},T = {b},R = {bbb}

abbba & L, abbaaaba & L, abaaaba € L

6/32

The Tier-based Strictly k-Local Languages

» More formally, TSL; grammar is G = (T,R C fac(T*))

eraser(w) def eraser(u)-oc ifw=uo,ue¥*oceT
eraser(u) itw=uo, ue¥*,0¢T

7132

The Tier-based Strictly k-Local Languages

» More formally, TSL; grammar is G = (T,R C facy(T™))

eraser(w) def eraser(u)-oc ifw=uo,ue¥*oceT
eraser(u) itw=uo, ue¥*,0¢T
» If X = {a,b},T = {b}, eraser(abbaaaba) = bbb
» The language is the set of strings that contain no banned

k-factors after erasing all non-tier symbols

L(G) def {w| faci(eraser(w)) NR = (I}

7132

Linguistic relevance of SL; and TSL;

» SL; and TSL; languages nontrivially model phonotactics;
speakers’ knowledge of how sounds are used to form words in
their language [HeilO, Heill, HRT11]

» English = {shrimp, blink, bork, flump, ...}
> S € Rgnglish (srimp, srit, ... English)

8/32

Linguistic relevance of SL; and TSL;

» Finnish [Nev10, Odd94]
poiitd-né ‘table-ESS’ ulko-ta ‘outside-ABL’
vikkird-nd ‘pinwheel-ESS’ pappi-na ‘priest-ESS’

9/32

Linguistic relevance of SL; and TSL;

» Finnish [Nev10, Odd94]
poiitd-nd ‘table-ESS’ ulko-ta ‘outside-ABL’
vikkdrd-nd ‘pinwheel-ESS’ pappi-na ‘priest-ESS’

» T = {6,ii,4,0,u,a} (notice no {i,e}!)

9/32

Linguistic relevance of SL; and TSL;

» Finnish [Nev10, Odd94]
poiitd-nd ‘table-ESS’ ulko-ta ‘outside-ABL’
vikkdrd-nd ‘pinwheel-ESS’ pappi-na ‘priest-ESS’
» T = {6,ii,4,0,u,a} (notice no {i,e}!)

> H4a€ Rpinnish: pippi-na ¢ Finnish

9/32

Linguistic relevance of SL; and TSL;

» Tiers are language-specific:

Turkish:
Finnish:
Sundanese:
Latin:
Samala:
Koorete:

Vowels

Vowels except {i, e}
{Lr}

{L,m, g}

{s.]}

{s,].b,1, g d}

[CS82]

[Rin75]
[Coh92]
[Csel0]
[RW04]
[MH16]

10/32

Learning goal

» For a given ¥ and k the set of grammars (7', R) is finite
» Thus learnable via enumeration [Gol67]

» Is there a smarter, efficient learner?

11/32

Learning paradigm

» ‘Efficient learning’ means exact identification in the limit in
polynomial time and data [dIH97]
> A characteristic sample /¢ for a language L for an algorithm A
is a finite set such that for all 7 O I¢ of L, L = L(A([))
» Goal is A that
» identifies L if I contains I¢ for L

» runs in time polynomial in ||Z|| for any input 7
> ||I¢|| for any TSLy language L is polynomial in the size of its

grammar

12/32

Learning paradigm

» Such an A exists for TSL, which runs in ||Z||* time [JH16]

» We present an A for any k which runs in ||||* time

13/32

Part 2 (of 2):
» Define canonical TSL; grammar
» Show two properties of 7" and > — T for canonical grammar

» Show how algorithm learns using these properties

14/32

Canonical TSL; grammar

Definition (Canonical 7SL; grammar)

A TSLy grammar G = (T, R) is canonical iff for any TSL; grammar
G'=(T",R'), L(G) = L(G') and G # G’ implies T C T'.

15/32

Canonical TSL; grammar

Definition (Canonical 7SL; grammar)

A TSLy grammar G = (T, R) is canonical iff for any TSL; grammar
G'=(T",R'), L(G) = L(G') and G # G’ implies T C T'.

» ¥ = {a,b}

Gy = (T} = {a,b}, Ry = {xbb, bbb, b, abb, bba, bab})
Gy, = (T, = {b}, Ry = {xbb, bbb, bbx})

L(Gy) = L(Gy) = {\,a,aa,ba,ab,aaa, aab, aba, baa, ...}

15/32

Canonical TSL; grammar

Definition (Canonical 7SL; grammar)

A TSLy grammar G = (T, R) is canonical iff for any TSL; grammar
G'=(T",R'), L(G) = L(G') and G # G’ implies T C T'.

» ¥ = {a,b}

Gy = (T} = {a,b}, Ry = {xbb, bbb, b ,abb, bba, bab})
Gy, = (T, = {b}, R» = {xbb, bbb, bbx})

L(Gy) = L(Gy) = {\,a,aa, ba,ab,aaa, aab, aba, baa, ...}

15/32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that
ViV € fack_l(L(G)).

» Intuition: Otherwise, o plays no role in determining language

16/32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)
If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that
ViV € fack_l(L(G)).
» Intuition: Otherwise, o plays no role in determining language

» Example:
G = (T ={a,b},R = {bab})

16/32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that
ViVvy € fack_l(L(G)).

» Intuition: Otherwise, o plays no role in determining language

» Example:
G = (T = {a,b},R = {bab})
ababa ¢ L(G), but abba € L(G)

16/32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)
If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that
ViVvy € fack_l(L(G)).
» Intuition: Otherwise, o plays no role in determining language

» Example:
G = (T = {a,b},R = {bab})
ababa ¢ L(G), but abba € L(G)

G' = (T = {a,b},R' = {xbb,bbb,bbx,abb, bba, bab})

16/32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that
ViVvy € fack_l(L(G)).

» Intuition: Otherwise, o plays no role in determining language

» Example:
G = (T = {a,b},R = {bab})
ababa ¢ L(G), but abba € L(G)

G' = (T = {a,b},R' = {xbb, bbb, bbx ,abb, bba, bab})
ababa,abba ¢ L(G")

16/32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that

ViVvy € fack_l(L(G)).

» Intuition: Otherwise, o plays no role in determining language

» Example:
G = (T = {a,b},R = {bab})
ababa ¢ L(G), but abba € L(G)

G' = (T = {a,b},R' = {xbb, bbb, bbx ,abb, bba, bab})
ababa,abba ¢ L(G")

G" = (T' = {b},R" = {xbb, bbb, bbx })
L(G') = L(G")!

16/32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)
For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yvivy € fack—1(L(G)),viov, € facy(L(G))

17/32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)
For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yvivy € fack—1(L(G)),viov, € facy(L(G))

» ¥ ={a,b,c},G=(T ={b,c},R = {bbb})

17/32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)
For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yviv € fack—1(L(G)),viov, € fack(L(G))

» ¥ ={a,b,c},G=(T ={b,c},R = {bbb})
abba, ababa € L(G)

17/32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)
For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yviv € fack—1(L(G)),viov, € fack(L(G))

» ¥ ={a,b,c},G=(T ={b,c},R = {bbb})
abba,ababa € L(G) , abbba ¢ L(G),

17/32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)
For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yviv € fack—1(L(G)),viov, € fack(L(G))

» ¥ ={a,b,c},G=(T ={b,c},R = {bbb})
abba,ababa € L(G) , abbba ¢ L(G), abba,abcba € L(G)

17/32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yviv € fack—1(L(G)),viov, € fack(L(G))
b. Yviovy € facit1(L(G)),viva € fack(L(G))

» ¥ ={a,b,c},G=(T ={b,c},R = {bbb})
abba,ababa € L(G) , abbba ¢ L(G), abba,abcba € L(G)

17/32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yviv € fack—1(L(G)),viov, € fack(L(G))
b. Yviov, € facky1(L(G)),viv» € fack(L(G))

» ¥ ={a,b,c},G=(T ={b,c},R = {bbb})

abba,ababa € L(G) , abbba ¢ L(G), abba,abcba € L(G)
abbcba € L(G),abbba ¢ L(G)

17/32

The algorithm

The non-tier member lemma: Iff o ¢ T
a. Yvivy € fack_1(L(G)),viov, € fack(L(G))
b. Yviov; € fack1(L(G)),viva € fack(L(G))

Y. ={a,b,c}, G=(T ={b,c},R = {bbb})

» The non-tier member lemma uniquely identifies non-tier
members

18/32

The algorithm

The KTSLIA: o from T hypothesis for which
a. Yvivy € facg_1(/),viovy € facg(/)

b. Yviovy € facgri(/),viva € fack(/)

» Given /, the Tier-based Strictly k-Local Induction Algorithm
(KTSLIA) searches through facy_(I), fack(l), faci+1(I)

19/32

The algorithm

The KTSLIA: o from T hypothesis for which
a. Yvivy € facg_1(/),viovy € facg(/)

b. Yviovy € facgri(/),viva € fack(/)

» Given /, the Tier-based Strictly k-Local Induction Algorithm
(KTSLIA) searches through facy_(I), fack(l), faci+1(I)

» Any o € X that satisfies both (a) and (b) removed from from
hypothesis for T

19/32

The algorithm

The KTSLIA: o from T hypothesis for which
a. Yvivy € facg_1(/),viovy € facg(/)

b. Yviovy € facgri(/),viva € fack(/)

» Given /, the Tier-based Strictly k-Local Induction Algorithm
(KTSLIA) searches through facy_(I), fack(l), faci+1(I)

» Any o € X that satisfies both (a) and (b) removed from from
hypothesis for T

» Hypothesis for R set to all remaining facy(7T*) not in facy(I)

19/32

The algorithm (example)
Target: G, = (T = {b},R. = {bbb}),¥ = {a,b},k =3

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors
A X X
a Xa,ax xax

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors
A X X

a Xa,ax xax

b X b,bx xbx

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors
A X X

a Xa,ax XaX

b X b,bx xbx

bb bb X bb, bbix X bbx

20/32

The algorithm (example)
Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3

Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors
A X X

a Xa,ax XaX

b X b,bx xbx

bb bb X bb, bbix X bbx
aaa ada X aa, aaa, aa X

Xaaa, aaax

20/32

The algorithm (example)
Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3

Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax XaX

b X b,bx xbx

bb bb X bb, bbix X bbx

aaa aa Xaa,aaa,aax Xaaa, aaax
bab ba,ab X ba, bab, abx xbab, babx

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax XaX

b X b,bx xbx

bb bb X bb, bbix X bbx

aaa aa Xaa, aaa, aax Xaaa, aaax

bab ba,ab X ba, bab, abx xbab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax XaX

b X b,bx xbx

bb bb X bb, bbix X bbx

aaa aa Xaa,aaa,aax Xaaa, aaax

bab ba,ab X ba, bab, abx xbab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b}, k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax XaX

b X b,bx xbx

bb bb X bb, bbix X bbx

aaa aa Xaa,aaa,aax Xaaa, aaax

bab ba,ab X ba, bab, abx xbab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yvivy € facg_1(I),viovy € fack(I)
b. Yviovy € faCk_H(I),V]Vz S fack(l)

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b},k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax XaX

b X b,bx xbx

bb bb X bb, bbix X bbx

aaa aa Xaa,aaa,aax Xaaa, aaax

bab ba,ab X ba, bab, abx xbab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yviv € facg_1(I),viov, € fack(I)
b. Yviovy € faCk_H(I),V]Vz S fack(l)

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b},k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,axX XaxX

b X b,bx xbx

bb bb X bb, bbx X bbx

aaa aa Xaa,aaa,aax Xaaa, aaax

bab ba,ab X ba, bab, abx xbab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yviv € facg_1(I),viov, € fack(I)
b. Yviovy € faCk_H(I),V]Vz S fack(l)

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b},k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax — XNax

b X b,bx xbx

bb bb X bb, bbx X bbx

aaa aa Xaa, aaa, aax Xaaa, aaax

bab ba,ab X ba, bab, abx xbab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yviv € facg_1(I),viov, € fack(I)
b. Yviovy € faCk_H(I),V]Vz S fack(l)

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b},k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax — XNax

b X b,bx Xbx

bb bb X bb, bbx X bbx

aaa aa Xaa, aaa, aax Xaaa, aaax

bab ba,ab X ba, bab, abx X bab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yviv € facg_1(I),viov, € fack(I)
b. Yviovy € faCk_H(I),V]Vz S fack(l)

20/32

The algorithm (example)

Target: G, = (T. = {b},R. = {bbb}),¥X = {a,b},k=3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,axX — Xax

b X b,bx Xbx

bb bb X bb, bbix X bbx

aaa aa Xaa,aaa, aax Xaaa, aaax

bab ba,ab X ba,bab, abx X bab, babx

abba — xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab,aba, baa Xaab, aaba,
abaa, baax

a. Yviv € facg_1(I),viov, € fack(I)

b. Yviovy € faCk_H(I),V]Vz S fack(l)

20/32

The algorithm (example)

Target: G, = (T. = {b},R,. = {bbb}),¥X = {a,b},k =3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xda, ax Xax

b X b, bx Xbx

bb bb X bb, bbx X bbx

aaa aa Xaa,aaa, aax Xaaa, aaax

bab ba,ab xba, bab, abx X bab, babx

abba — xab, abb,bba,bax xabb,abba, bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yvivy € facg—1(I),viov, € fack(I)

b. Vvio

€ facit+ (I),

€ fack(l)

21/32

The algorithm (example)

Target: G, = (T. = {b},R,. = {bbb}),¥X = {a,b},k =3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xda, ax Xax

b X b, bx Xbx

bb bb ,bbx X bbx

aaa aa Xaa,aaa, aax Xaaa, aaax

bab ba,ab xba, bab, abx ab, babx

abba — xab, abb,bba,bax xabb,abba, bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yvivy € facg—1(I),viov, € fack(I)

b. Vvio

€ facit+ (I),

€ fack(l)

21/32

The algorithm (example)

Target: G, = (T. = {b},R,. = {bbb}),¥X = {a,b},k =3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xda, ax Xax

b X b, bx Xbx

bb bb xbb, bbix X bbx

aaa aa Xaa,aaa, aax Xaaa, aaax

bab ba,ab xba, bab, abx xbab, babx

abba — xab, abb,bba,bax xabb,abba, bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Vv € fack—1(I),viovs € fack(l)

b. Yviovy € faCk_H(I),V]Vz S fack(l)

22/32

The algorithm (example)

Target: G, = (T. = {b},R,. = {bbb}),¥X = {a,b},k =3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax Xax

b b, bix X b

bb bb X bb, bbix X bbx

aaa aa Xaa, aaa, aax Xaaa, aaax

bab ba,ab xba, bab, abx xbab, babx

abba — Xab,abb,bba,bax xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

> T = {b},R = facs(T*) — facs(l) = {bbb}

23/32

The algorithm (correctness)

The non-tier member lemma: Iff o ¢ T
a. Yvivy € fack—1(L(G)),viov; € fack(L(G))
b. Vviom € fackt1(L(G)), € faci(L(G))

The characteristic sample is a set C such that
» Foreveryo ¢ T,

> Yviv € facg—1(L), Iviov, € facy(C).
> Yviov € facgy(L),3 € facy(C).

24/32

The algorithm (correctness)

The non-tier member lemma: Iff o ¢ T
a. Yvivy € fack—1(L(G)),viov; € fack(L(G))
b. Vviom € fackt1(L(G)), € faci(L(G))

The characteristic sample is a set C such that

» For every p € T that appears in R, some v|v; € facg_1(C) such
that vipv, € R

» For all other 7 € T, some € fack41(C) such that ER

25/32

The algorithm (correctness)

The characteristic sample is a set C such that
» Foreveryw € facy(T*) — R, w € fack(C)

26/32

The algorithm (data complexity)

» The minimum size of the characteristic sample is bounded by
O(|3|%), which is constant

27132

The algorithm (time complexity)

v

For input / and n = ||1||, the KTSLIA runs in O(n?) time
Complexity of facy) (1) is O(n)
Two main steps:

a. Yviv € facg—1(I),viovy € faci(l)

v

v

O(n) . O(m) = 0#?)
b. Yviov, € fack+1(1),v1v2 S fack(l)
O(n) . O(m) = 0#n?)

» One more scan through facy(I) (to find R) = O(n)

28/32

Discussion and conclusion

» Given k, the KTSLIA exactly identifies any TSL; language in
quadratic time with a characteristic sample bounded in size by a
constant w.r.t. that language’s grammar

» The KTSLIA built on specific properties of elements of 7" and
T-—-%

29/32

Discussion and conclusion

» Given k, the KTSLIA exactly identifies any TSL; language in
quadratic time with a characteristic sample bounded in size by a
constant w.r.t. that language’s grammar

» The KTSLIA built on specific properties of elements of 7" and
T-%
» This result motivated by natural language phonotactics

» Is the /¢ present in natural language data?

» How can a stochastic learner build on this A TSLIA?

» How can we extend these ideas to phonological functions (e.g.
[JAKC15, CJH15])?

29/32

Thank you!

We would also like to thank Gunnar Hansson, Jane Chandlee, Jeffrey
Heinz, and three anonymous reviewers for their thoughts and insights.

30/32

References |

[CJH15] Jane Chandlee, Adam Jardine, and Jeffrey Heinz, Learning
repairs for marked structures, Proceedings of the 2015 Annual
Meeting on Phonology, LSA, 2015.

[Coh92] Abigail Cohn, The consequences of dissimilation in Sundanese,
Phonology 9 (1992), 199-220.

[CS82] George N. Clements and Engin Sezer, Vowel and consonant
disharmony in Turkish, The Structure of Phonological
Representations (Part IT) (Harry van der Hulst and Norval Smith,
eds.), Foris, Dordrecht, 1982.

[Csel0] Andras Cser, The -alis/aris- allomorphy revisited, Variation and
change in morphology: selected papers from the 13th
international morphology meeting (D. Kastovsky, F. Rainer,

W. U. Dressler, and H. C. Luschiitzky, eds.), Philadelphia: John
Benjamins, 2010, pp. 33-51.

[dIH97] Colin de la Higuera, Characteristic sets for polynomial
grammatical inference, Machine Learning 27 (1997), no. 2,
125-138.

30/32

References 11

[Gol67] Mark E. Gold, Language identification in the limit, Information
and Control 10 (1967), 447-474.

[HeilO] Jeffrey Heinz, Learning long-distance phonotactics, L1 41
(2010), 623-661.

, Computational phonology part I: Foundations,
Language and Linguistics Compass 5 (2011), no. 4, 140-152.

[HRT11] Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner, Tier-based
strictly local constraints for phonology, Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics (Portland, Oregon, USA), Association for
Computational Linguistics, June 2011, pp. 58-64.
[JAKC15] Adam Jardine, Angeliki Athanasopoulou, Kristian, and Peter
Cole, Banyadugq prestopped nasals: Synchrony and diachrony,
Oceanic Linguistics 54 (2015), 548-578.
[JH16] Adam Jardine and Jeffrey Heinz, Learning tier-based strictly
2-local languages, Transactions of the Association for
Computational Linguistics 4 (2016), 87-98.

[Heill]

31/32

References I11

[MH16]

[MP71]
[Nev10]
[Odd94]

[RHF*13]

[Rin75]

[RW04]

Kevin McMullin and Gunnar Olafur Hansson, Long-distance
phonotactics as Tier-Based Strictly 2-Local languages,
Proceedings of the Annual Meeting on Phonology 2015 (Adam
Albright and Michelle A. Fullwood, eds.), 2016.

Robert McNaughton and Seymour Papert, Counter-free
automata, MIT Press, 1971.

Andrew Nevins, Locality in vowel harmony, Linguistic Inquiry
Monographs, no. 55, MIT Press, 2010.

David Odden, Adjacency parameters in phonology, Language 70
(1994), no. 2, 289-330.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst,
Dakotah Lambert, and Sean Wibel, Cognitive and sub-regular
complexity, Formal Grammar, Lecture Notes in Computer
Science, vol. 8036, Springer, 2013, pp. 90-108.

Catherine Ringen, Vowel harmony: Theoretical implications,
Ph.D. thesis, Indiana University, 1975.

Sharon Rose and Rachel Walker, A typology of consonant
agreement as correspondence, Language 80 (2004), 475-531.

32/32

