
Efficient Learning of Tier-based Strictly k-Local

languages

Adam Jardine Kevin McMullin

Rutgers University University of Ottawa

The 11th International Conference on Language and Automata

Theory and Applications

Umeå University, Umeå, Sweden

March 6, 2017

Overview

◮ The Tier-based Strictly k-Local (TSLk) languages are formal
languages where dependencies hold independent of some set of
‘ignored’ symbols

◮ TSLk argued to be a close approximation of attested linguistic

sound patterns

◮ We introduce the Tier-based k-Strictly Local Inference

Algorithm (kTSLIA)

◮ Identifies TSLk languages in quadratic time; size of sample

necessary for identification is bounded by a constant

◮ We do this by proving new properties about TSL languages that

allow the learner to discover which symbols can(not) be ignored

2 / 32

Part 1 (of 2):

◮ Introduce and motivate TSLk languages

◮ Identify learning paradigm

3 / 32

Some Notation

◮ Σ is alphabet; ⋊,⋉ 6∈ Σ are boundary symbols

◮ For w ∈ Σ∗, u is a k-factor of w if ⋊w⋉ = v1uv2 and |u| = k.

fack(w)
def
= {u | u is a k-factor of ⋊ w⋉} if |⋊ w ⋉ | > k

{⋊w⋉} otherwise

4 / 32

Some Notation

◮ Σ is alphabet; ⋊,⋉ 6∈ Σ are boundary symbols

◮ For w ∈ Σ∗, u is a k-factor of w if ⋊w⋉ = v1uv2 and |u| = k.

fack(w)
def
= {u | u is a k-factor of ⋊ w⋉} if |⋊ w ⋉ | > k

{⋊w⋉} otherwise

◮ fac3(abbba) = {⋊ab, abb, bbb, bba, ba⋉}

4 / 32

Some Notation

◮ Σ is alphabet; ⋊,⋉ 6∈ Σ are boundary symbols

◮ For w ∈ Σ∗, u is a k-factor of w if ⋊w⋉ = v1uv2 and |u| = k.

fack(w)
def
= {u | u is a k-factor of ⋊ w⋉} if |⋊ w ⋉ | > k

{⋊w⋉} otherwise

◮ fac3(abbba) = {⋊ab, abb, bbb, bba, ba⋉}

◮ Extends straightforwardly to fack(L) for set L ⊆ Σ∗

◮ fack(L) computed in time linear in ||L||

4 / 32

The Strictly k-Local Languages

◮ The Strictly k-Local (SLk) languages [MP71, RHF+13] model

‘local’ dependencies

R ⊆ fack(Σ
∗)

◮ The language is the set of strings that contain no banned k-factors

L(R)
def
= {w ∈ Σ∗ | fack(w) ∩ R = ∅}

5 / 32

The Strictly k-Local Languages

◮ The Strictly k-Local (SLk) languages [MP71, RHF+13] model

‘local’ dependencies

R ⊆ fack(Σ
∗)

◮ The language is the set of strings that contain no banned k-factors

L(R)
def
= {w ∈ Σ∗ | fack(w) ∩ R = ∅}

◮ R = {⋊ab}; abbba 6∈ L(R), babab ∈ L(R)

5 / 32

The Tier-based Strictly k-Local Languages

◮ The TSLk languages [HRT11] generalize SLk languages with a

tier T ⊆ Σ over which R is evaluated

◮ All symbols in Σ− T ignored

Σ = {a, b},T = {b},R = {bbb}

abbba , abbaaaba , abaaaba

6 / 32

The Tier-based Strictly k-Local Languages

◮ The TSLk languages [HRT11] generalize SLk languages with a

tier T ⊆ Σ over which R is evaluated

◮ All symbols in Σ− T ignored

Σ = {a, b},T = {b},R = {bbb}

abbba , abbaaaba , abaaaba

6 / 32

The Tier-based Strictly k-Local Languages

◮ The TSLk languages [HRT11] generalize SLk languages with a

tier T ⊆ Σ over which R is evaluated

◮ All symbols in Σ− T ignored

Σ = {a, b},T = {b},R = {bbb}

abbba 6∈ L, abbaaaba 6∈ L, abaaaba ∈ L

6 / 32

The Tier-based Strictly k-Local Languages

◮ More formally, TSLk grammar is G = 〈T,R ⊆ fack(T
∗)〉

eraseT(w)
def
= eraseT(u) · σ if w = uσ, u ∈ Σ∗, σ ∈ T

eraseT(u) if w = uσ, u ∈ Σ∗, σ 6∈ T

7 / 32

The Tier-based Strictly k-Local Languages

◮ More formally, TSLk grammar is G = 〈T,R ⊆ fack(T
∗)〉

eraseT(w)
def
= eraseT(u) · σ if w = uσ, u ∈ Σ∗, σ ∈ T

eraseT(u) if w = uσ, u ∈ Σ∗, σ 6∈ T

◮ If Σ = {a, b},T = {b}, eraseT(abbaaaba) = bbb

◮ The language is the set of strings that contain no banned

k-factors after erasing all non-tier symbols

L(G)
def
= {w | fack(eraseT(w)) ∩ R = ∅}

7 / 32

Linguistic relevance of SLk and TSLk

◮ SLk and TSLk languages nontrivially model phonotactics;

speakers’ knowledge of how sounds are used to form words in

their language [Hei10, Hei11, HRT11]

◮ English = {shrimp, blink, bork, flump, ...}

◮ sr ∈ REnglish (srimp, srit, ... 6∈ English)

8 / 32

Linguistic relevance of SLk and TSLk

◮ Finnish [Nev10, Odd94]

pöütä-nä ‘table-ESS’ ulko-ta ‘outside-ABL’

väkkärä-nä ‘pinwheel-ESS’ pappi-na ‘priest-ESS’

9 / 32

Linguistic relevance of SLk and TSLk

◮ Finnish [Nev10, Odd94]

pöütä-nä ‘table-ESS’ ulko-ta ‘outside-ABL’

väkkärä-nä ‘pinwheel-ESS’ pappi-na ‘priest-ESS’

◮ T = {ö,ü,ä,o,u,a} (notice no {i, e}!)

9 / 32

Linguistic relevance of SLk and TSLk

◮ Finnish [Nev10, Odd94]

pöütä-nä ‘table-ESS’ ulko-ta ‘outside-ABL’

väkkärä-nä ‘pinwheel-ESS’ pappi-na ‘priest-ESS’

◮ T = {ö,ü,ä,o,u,a} (notice no {i, e}!)

◮ äa∈ RFinnish: päppi-na 6∈ Finnish

9 / 32

Linguistic relevance of SLk and TSLk

◮ Tiers are language-specific:

Turkish: Vowels [CS82]

Finnish: Vowels except {i, e} [Rin75]

Sundanese: {l, r} [Coh92]

Latin: {l, r, m, g} [Cse10]

Samala: {s, S} [RW04]

Koorete: {s, S, b, r, g, d} [MH16]

10 / 32

Learning goal

◮ For a given Σ and k the set of grammars 〈T,R〉 is finite

◮ Thus learnable via enumeration [Gol67]

◮ Is there a smarter, efficient learner?

11 / 32

Learning paradigm

◮ ‘Efficient learning’ means exact identification in the limit in

polynomial time and data [dlH97]

◮ A characteristic sample IC for a language L for an algorithm A

is a finite set such that for all I ⊇ IC of L, L = L(A(I))

◮ Goal is A that
◮ identifies L if I contains IC for L
◮ runs in time polynomial in ||I|| for any input I
◮ ||IC|| for any TSLk language L is polynomial in the size of its

grammar

12 / 32

Learning paradigm

◮ Such an A exists for TSL2 which runs in ||I||4 time [JH16]

◮ We present an A for any k which runs in ||I||2 time

13 / 32

Part 2 (of 2):

◮ Define canonical TSLk grammar

◮ Show two properties of T and Σ− T for canonical grammar

◮ Show how algorithm learns using these properties

14 / 32

Canonical TSLk grammar

Definition (Canonical TSLk grammar)

A TSLk grammar G = 〈T,R〉 is canonical iff for any TSLk grammar

G′ = 〈T ′,R′〉, L(G) = L(G′) and G 6= G′ implies T ⊂ T ′.

15 / 32

Canonical TSLk grammar

Definition (Canonical TSLk grammar)

A TSLk grammar G = 〈T,R〉 is canonical iff for any TSLk grammar

G′ = 〈T ′,R′〉, L(G) = L(G′) and G 6= G′ implies T ⊂ T ′.

◮ Σ = {a, b}

G1 = 〈T1 = {a, b},R1 = {⋊bb, bbb, bb⋉, abb, bba, bab}〉
G2 = 〈T2 = {b}, R2 = {⋊bb, bbb, bb⋉}〉

L(G1) = L(G2) = {λ, a, aa, ba, ab, aaa, aab, aba, baa, ...}

15 / 32

Canonical TSLk grammar

Definition (Canonical TSLk grammar)

A TSLk grammar G = 〈T,R〉 is canonical iff for any TSLk grammar

G′ = 〈T ′,R′〉, L(G) = L(G′) and G 6= G′ implies T ⊂ T ′.

◮ Σ = {a, b}

G1 = 〈T1 = {a, b},R1 = {⋊bb, bbb, bb⋉, abb, bba, bab}〉
G2 = 〈T2 = {b}, R2 = {⋊bb, bbb, bb⋉}〉

L(G1) = L(G2) = {λ, a, aa, ba, ab, aaa, aab, aba, baa, ...}

15 / 32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language

16 / 32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language

◮ Example:

G = 〈T = {a, b},R = {bab}〉

16 / 32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language

◮ Example:

G = 〈T = {a, b},R = {bab}〉
ababa 6∈ L(G), but abba ∈ L(G)

16 / 32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language

◮ Example:

G = 〈T = {a, b},R = {bab}〉
ababa 6∈ L(G), but abba ∈ L(G)

G′ = 〈T = {a, b},R′ = {⋊bb, bbb, bb⋉, abb, bba, bab}〉

16 / 32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language

◮ Example:

G = 〈T = {a, b},R = {bab}〉
ababa 6∈ L(G), but abba ∈ L(G)

G′ = 〈T = {a, b},R′ = {⋊bb, bbb, bb⋉, abb, bba, bab}〉
ababa, abba 6∈ L(G′)

16 / 32

Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T which

appear in R, there is at least one v1σv2 ∈ R such that

v1v2 ∈ fack−1(L(G)).

◮ Intuition: Otherwise, σ plays no role in determining language

◮ Example:

G = 〈T = {a, b},R = {bab}〉
ababa 6∈ L(G), but abba ∈ L(G)

G′ = 〈T = {a, b},R′ = {⋊bb, bbb, bb⋉, abb, bba, bab}〉
ababa, abba 6∈ L(G′)

G′′ = 〈T ′ = {b},R′′ = {⋊bb, bbb, bb⋉}〉
L(G′) = L(G′′)!

16 / 32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

17 / 32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

◮ Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉

17 / 32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

◮ Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉
abba, ababa ∈ L(G)

17 / 32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

◮ Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉
abba, ababa ∈ L(G) , abbba 6∈ L(G),

17 / 32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

◮ Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉
abba, ababa ∈ L(G) , abbba 6∈ L(G), abba, abcba ∈ L(G)

17 / 32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

◮ Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉
abba, ababa ∈ L(G) , abbba 6∈ L(G), abba, abcba ∈ L(G)

17 / 32

Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLk grammar G, the following hold iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

◮ Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉
abba, ababa ∈ L(G) , abbba 6∈ L(G), abba, abcba ∈ L(G)
abbcba ∈ L(G), abbba 6∈ L(G)

17 / 32

The algorithm

The non-tier member lemma: Iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

Σ = {a, b, c}, G = 〈T = {b, c},R = {bbb}〉

◮ The non-tier member lemma uniquely identifies non-tier

members

18 / 32

The algorithm

The kTSLIA: σ from T hypothesis for which

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

◮ Given I, the Tier-based Strictly k-Local Induction Algorithm

(kTSLIA) searches through fack−1(I), fack(I), fack+1(I)

19 / 32

The algorithm

The kTSLIA: σ from T hypothesis for which

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

◮ Given I, the Tier-based Strictly k-Local Induction Algorithm

(kTSLIA) searches through fack−1(I), fack(I), fack+1(I)

◮ Any σ ∈ Σ that satisfies both (a) and (b) removed from from

hypothesis for T

19 / 32

The algorithm

The kTSLIA: σ from T hypothesis for which

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

◮ Given I, the Tier-based Strictly k-Local Induction Algorithm

(kTSLIA) searches through fack−1(I), fack(I), fack+1(I)

◮ Any σ ∈ Σ that satisfies both (a) and (b) removed from from

hypothesis for T

◮ Hypothesis for R set to all remaining fack(T
∗) not in fack(I)

19 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊ a, a⋉ ⋊a⋉

b ⋊ b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

20 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊a, a⋉ ⋊a⋉

b ⋊b, b⋉ ⋊b⋉

bb bb ⋊ bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ba, bab, ab⋉ ⋊ bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

21 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊a, a⋉ ⋊a⋉

b ⋊b, b⋉ ⋊b⋉

bb bb ⋊ bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ba, bab, ab⋉ ⋊ bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

21 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊a, a⋉ ⋊a⋉

b ⋊b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

a. ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I)

b. ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I)

22 / 32

The algorithm (example)

Target: G∗ = 〈T∗ = {b},R∗ = {bbb}〉,Σ = {a, b}, k = 3

Sample: {λ, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

λ ⋊⋉

a ⋊a, a⋉ ⋊a⋉

b ⋊b, b⋉ ⋊b⋉

bb bb ⋊bb, bb⋉ ⋊bb⋉

aaa aa ⋊aa, aaa, aa⋉ ⋊aaa, aaa⋉

bab ba, ab ⋊ba, bab, ab⋉ ⋊bab, bab⋉

abba — ⋊ab, abb, bba, ba⋉ ⋊abb, abba, bba⋉

aabaabaa — aab, aba, baa ⋊aab, aaba,

abaa, baa⋉

◮ T = {b}, R = fac3(T
∗)− fac3(I) = {bbb}

23 / 32

The algorithm (correctness)

The non-tier member lemma: Iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

The characteristic sample is a set C such that

◮ For every σ 6∈ T ,
◮ ∀v1v2 ∈ fack−1(L), ∃v1σv2 ∈ fack(C).
◮ ∀v1σv2 ∈ fack+1(L), ∃v1v2 ∈ fack(C).

24 / 32

The algorithm (correctness)

The non-tier member lemma: Iff σ 6∈ T:

a. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G))

b. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G))

The characteristic sample is a set C such that

◮ For every ρ ∈ T that appears in R, some v1v2 ∈ fack−1(C) such

that v1ρv2 ∈ R

◮ For all other τ ∈ T , some v1τv2 ∈ fack+1(C) such that v1v2 ∈ R

25 / 32

The algorithm (correctness)

The characteristic sample is a set C such that

◮ For every w ∈ fack(T
∗)− R, w ∈ fack(C)

26 / 32

The algorithm (data complexity)

◮ The minimum size of the characteristic sample is bounded by

O(|Σ|k), which is constant

27 / 32

The algorithm (time complexity)

◮ For input I and n = ||I||, the kTSLIA runs in O(n2) time

◮ Complexity of fack(±1)(I) is O(n)

◮ Two main steps:

a. ∀v1v2 ∈ fack−1(I)
︸ ︷︷ ︸

, v1σv2 ∈ fack(I)
︸ ︷︷ ︸

O(n) · O(n) = O(n2)
b. ∀v1σv2 ∈ fack+1(I)

︸ ︷︷ ︸
, v1v2 ∈ fack(I)
︸ ︷︷ ︸

O(n) · O(n) = O(n2)

◮ One more scan through fack(I) (to find R) = O(n)

28 / 32

Discussion and conclusion

◮ Given k, the kTSLIA exactly identifies any TSLk language in

quadratic time with a characteristic sample bounded in size by a

constant w.r.t. that language’s grammar

◮ The kTSLIA built on specific properties of elements of T and

T − Σ

29 / 32

Discussion and conclusion

◮ Given k, the kTSLIA exactly identifies any TSLk language in

quadratic time with a characteristic sample bounded in size by a

constant w.r.t. that language’s grammar

◮ The kTSLIA built on specific properties of elements of T and

T − Σ

◮ This result motivated by natural language phonotactics
◮ Is the IC present in natural language data?
◮ How can a stochastic learner build on this kTSLIA?
◮ How can we extend these ideas to phonological functions (e.g.

[JAKC15, CJH15])?

29 / 32

Thank you!

We would also like to thank Gunnar Hansson, Jane Chandlee, Jeffrey

Heinz, and three anonymous reviewers for their thoughts and insights.

30 / 32

References I

[CJH15] Jane Chandlee, Adam Jardine, and Jeffrey Heinz, Learning

repairs for marked structures, Proceedings of the 2015 Annual

Meeting on Phonology, LSA, 2015.

[Coh92] Abigail Cohn, The consequences of dissimilation in Sundanese,

Phonology 9 (1992), 199–220.

[CS82] George N. Clements and Engin Sezer, Vowel and consonant

disharmony in Turkish, The Structure of Phonological

Representations (Part II) (Harry van der Hulst and Norval Smith,

eds.), Foris, Dordrecht, 1982.

[Cse10] András Cser, The -alis/aris- allomorphy revisited, Variation and

change in morphology: selected papers from the 13th

international morphology meeting (D. Kastovsky, F. Rainer,

W. U. Dressler, and H. C. Luschützky, eds.), Philadelphia: John

Benjamins, 2010, pp. 33–51.

[dlH97] Colin de la Higuera, Characteristic sets for polynomial

grammatical inference, Machine Learning 27 (1997), no. 2,

125–138.

30 / 32

References II

[Gol67] Mark E. Gold, Language identification in the limit, Information

and Control 10 (1967), 447–474.

[Hei10] Jeffrey Heinz, Learning long-distance phonotactics, LI 41

(2010), 623–661.

[Hei11] , Computational phonology part I: Foundations,

Language and Linguistics Compass 5 (2011), no. 4, 140–152.

[HRT11] Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner, Tier-based

strictly local constraints for phonology, Proceedings of the 49th

Annual Meeting of the Association for Computational

Linguistics (Portland, Oregon, USA), Association for

Computational Linguistics, June 2011, pp. 58–64.

[JAKC15] Adam Jardine, Angeliki Athanasopoulou, Kristian, and Peter

Cole, Banyaduq prestopped nasals: Synchrony and diachrony,

Oceanic Linguistics 54 (2015), 548–578.

[JH16] Adam Jardine and Jeffrey Heinz, Learning tier-based strictly

2-local languages, Transactions of the Association for

Computational Linguistics 4 (2016), 87–98.

31 / 32

References III
[MH16] Kevin McMullin and Gunnar Ólafur Hansson, Long-distance

phonotactics as Tier-Based Strictly 2-Local languages,

Proceedings of the Annual Meeting on Phonology 2015 (Adam

Albright and Michelle A. Fullwood, eds.), 2016.

[MP71] Robert McNaughton and Seymour Papert, Counter-free

automata, MIT Press, 1971.

[Nev10] Andrew Nevins, Locality in vowel harmony, Linguistic Inquiry

Monographs, no. 55, MIT Press, 2010.

[Odd94] David Odden, Adjacency parameters in phonology, Language 70

(1994), no. 2, 289–330.

[RHF+13] James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst,

Dakotah Lambert, and Sean Wibel, Cognitive and sub-regular

complexity, Formal Grammar, Lecture Notes in Computer

Science, vol. 8036, Springer, 2013, pp. 90–108.

[Rin75] Catherine Ringen, Vowel harmony: Theoretical implications,

Ph.D. thesis, Indiana University, 1975.

[RW04] Sharon Rose and Rachel Walker, A typology of consonant

agreement as correspondence, Language 80 (2004), 475–531.

32 / 32

