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Overview

» The Tier-based Strictly k-Local (TSL) languages are formal
languages where dependencies hold independent of some set of
‘ignored’ symbols

» TSL; argued to be a close approximation of attested linguistic
sound patterns

» We introduce the Tier-based k-Strictly Local Inference
Algorithm (KTSLIA)

» Identifies TSL; languages in quadratic time; size of sample
necessary for identification is bounded by a constant

» We do this by proving new properties about TSL languages that
allow the learner to discover which symbols can(not) be ignored
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Part 1 (of 2):
» Introduce and motivate TSL; languages

» Identify learning paradigm
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Some Notation

» X is alphabet; x, X ¢ 3 are boundary symbols

» Forw € ¥*, u is a k-factor of w if xwix = vjuv, and |u| = k.

faci(w) def {u | uisak-factor of x wx} if|xwx|>k
{xwx} otherwise
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Some Notation

v

3} is alphabet; x, X ¢ X are boundary symbols

v

For w € ¥*, u is a k-factor of w if xwx = viuv, and |u| = k.

faci(w) def {u | uisak-factor of x wx} if|xwx|>k
{xwx} otherwise

v

facs(abbba) = {xab,abb, bbb, bba, bax }
Extends straightforwardly to facy(L) for set L C >*

v

v

facg(L) computed in time linear in ||L||
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The Strictly k-Local Languages

» The Strictly k-Local (SL;) languages [MP71, RHF"13] model
‘local’ dependencies

R C facy(X")

» The language is the set of strings that contain no banned k-factors

LR) € (we o | face(w)NR = 0}
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The Strictly k-Local Languages

» The Strictly k-Local (SL;) languages [MP71, RHF"13] model
‘local’ dependencies

R C facy(X")

» The language is the set of strings that contain no banned k-factors

LR) € (we o | face(w)NR = 0}

» R = {xab}; abbba ¢ L(R), babab € L(R)
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The Tier-based Strictly k-Local Languages

» The TSL; languages [HRT11] generalize SL; languages with a
tier 7 C X over which R is evaluated

» All symbols in > — T ignored
Y ={a,b},T = {b},R = {bbb}

abbba , abbaaaba , abaaaba
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The Tier-based Strictly k-Local Languages

» The TSL; languages [HRT11] generalize SL; languages with a
tier 7 C X over which R is evaluated

» All symbols in > — T ignored
Y ={a,b},T = {b},R = {bbb}

abbba & L, abbaaaba & L, abaaaba € L
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The Tier-based Strictly k-Local Languages

» More formally, TSL; grammar is G = (T,R C fac(T*))

eraser(w) def eraser(u)-oc ifw=uo,ue¥*oceT
eraser(u) itw=uo, ue¥*,0¢T
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The Tier-based Strictly k-Local Languages

» More formally, TSL; grammar is G = (T,R C facy(T™))

eraser(w) def eraser(u)-oc ifw=uo,ue¥*oceT
eraser(u) itw=uo, ue¥*,0¢T
» If X = {a,b},T = {b}, eraser(abbaaaba) = bbb
» The language is the set of strings that contain no banned

k-factors after erasing all non-tier symbols

L(G) def {w| faci(eraser(w)) NR = (I}
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Linguistic relevance of SL; and TSL;

» SL; and TSL; languages nontrivially model phonotactics;
speakers’ knowledge of how sounds are used to form words in
their language [HeilO, Heill, HRT11]

» English = {shrimp, blink, bork, flump, ...}
> S € Rgnglish (srimp, srit, ... English)

8/32



Linguistic relevance of SL; and TSL;

» Finnish [Nev10, Odd94]
poiitd-né ‘table-ESS’ ulko-ta ‘outside-ABL’
vikkird-nd ‘pinwheel-ESS’  pappi-na ‘priest-ESS’
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Linguistic relevance of SL; and TSL;

» Finnish [Nev10, Odd94]
poiitd-nd ‘table-ESS’ ulko-ta ‘outside-ABL’
vikkdrd-nd ‘pinwheel-ESS’  pappi-na ‘priest-ESS’
» T = {6,ii,4,0,u,a} (notice no {i,e}!)

> H4a€ Rpinnish: pippi-na ¢ Finnish
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Linguistic relevance of SL; and TSL;

» Tiers are language-specific:

Turkish:
Finnish:
Sundanese:
Latin:
Samala:
Koorete:

Vowels

Vowels except {i, e}
{Lr}

{L,m, g}

{s. ]}

{s,].b,1, g d}

[CS82]

[Rin75]
[Coh92]
[Csel0]
[RW04]
[MH16]
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Learning goal

» For a given ¥ and k the set of grammars (7', R) is finite
» Thus learnable via enumeration [Gol67]

» Is there a smarter, efficient learner?
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Learning paradigm

» ‘Efficient learning’ means exact identification in the limit in
polynomial time and data [dIH97]
> A characteristic sample /¢ for a language L for an algorithm A
is a finite set such that for all 7 O I¢ of L, L = L(A([))
» Goal is A that
» identifies L if I contains I¢ for L

» runs in time polynomial in ||Z|| for any input 7
> ||I¢|| for any TSLy language L is polynomial in the size of its

grammar
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Learning paradigm

» Such an A exists for TSL, which runs in ||Z||* time [JH16]

» We present an A for any k which runs in ||||* time
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Part 2 (of 2):
» Define canonical TSL; grammar
» Show two properties of 7" and > — T for canonical grammar

» Show how algorithm learns using these properties
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Canonical TSL; grammar

Definition (Canonical 7SL; grammar)

A TSLy grammar G = (T, R) is canonical iff for any TSL; grammar
G'=(T",R'), L(G) = L(G') and G # G’ implies T C T'.
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A TSLy grammar G = (T, R) is canonical iff for any TSL; grammar
G'=(T",R'), L(G) = L(G') and G # G’ implies T C T'.

» ¥ = {a,b}

Gy = (T} = {a,b}, Ry = {xbb, bbb, b ,abb, bba, bab})
Gy, = (T, = {b}, R» = {xbb, bbb, bbx})
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Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that
ViV € fack_l(L(G)).

» Intuition: Otherwise, o plays no role in determining language
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Properties of canonical grammar

Lemma (The ‘R tier member lemma’)

If G = (T, R) is a canonical TSLy grammar, then for all o € T which
appear in R, there is at least one viov, € R such that

ViVvy € fack_l(L(G)).

» Intuition: Otherwise, o plays no role in determining language

» Example:
G = (T = {a,b},R = {bab})
ababa ¢ L(G), but abba € L(G)

G' = (T = {a,b},R' = {xbb, bbb, bbx ,abb, bba, bab})
ababa,abba ¢ L(G")

G" = (T' = {b},R" = {xbb, bbb, bbx })
L(G') = L(G")!
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Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)
For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yvivy € fack—1(L(G)),viov, € facy(L(G))
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Properties of canonical grammar

Lemma (The ‘non-tier member lemma’)

For a canonical TSLy, grammar G, the following hold iff o & T:
a. Yviv € fack—1(L(G)),viov, € fack(L(G))
b. Yviov, € facky1(L(G)),viv» € fack(L(G))

» ¥ ={a,b,c},G=(T ={b,c},R = {bbb})

abba,ababa € L(G) , abbba ¢ L(G), abba,abcba € L(G)
abbcba € L(G),abbba ¢ L(G)
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The algorithm

The non-tier member lemma: Iff o ¢ T
a. Yvivy € fack_1(L(G)),viov, € fack(L(G))
b. Yviov; € fack1(L(G)),viva € fack(L(G))

Y. ={a,b,c}, G=(T ={b,c},R = {bbb})

» The non-tier member lemma uniquely identifies non-tier
members
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The algorithm

The KTSLIA: o from T hypothesis for which
a. Yvivy € facg_1(/),viovy € facg(/)

b. Yviovy € facgri(/),viva € fack(/)

» Given /, the Tier-based Strictly k-Local Induction Algorithm
(KTSLIA) searches through facy_(I), fack(l), faci+1(I)
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The algorithm

The KTSLIA: o from T hypothesis for which
a. Yvivy € facg_1(/),viovy € facg(/)

b. Yviovy € facgri(/),viva € fack(/)

» Given /, the Tier-based Strictly k-Local Induction Algorithm
(KTSLIA) searches through facy_(I), fack(l), faci+1(I)

» Any o € X that satisfies both (a) and (b) removed from from
hypothesis for T

» Hypothesis for R set to all remaining facy(7T*) not in facy(I)
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The algorithm (example)
Target: G, = (T = {b},R. = {bbb}),¥ = {a,b},k =3
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The algorithm (example)
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aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Yvivy € facg—1(I),viov, € fack(I)

b. Vvio

€ facit+ (I),

€ fack(l)
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The algorithm (example)

Target: G, = (T. = {b},R,. = {bbb}),¥X = {a,b},k =3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xda, ax Xax

b X b, bx Xbx

bb bb xbb, bbix X bbx

aaa aa Xaa,aaa, aax Xaaa, aaax

bab ba,ab xba, bab, abx xbab, babx

abba — xab, abb,bba,bax  xabb,abba, bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

a. Vv € fack—1(I),viovs € fack(l)

b. Yviovy € faCk_H(I),V]Vz S fack(l)

22/32



The algorithm (example)

Target: G, = (T. = {b},R,. = {bbb}),¥X = {a,b},k =3
Sample: {\, a, b, bb, aaa, bab, abba, aabaabaa}

String 2-factors 3-factors 4-factors

A X X

a Xa,ax Xax

b b, bix X b

bb bb X bb, bbix X bbx

aaa aa Xaa, aaa, aax Xaaa, aaax

bab ba,ab xba, bab, abx xbab, babx

abba — Xab,abb,bba,bax  xabb,abba,bbax

aabaabaa — aab, aba, baa Xaab, aaba,
abaa, baax

> T = {b},R = facs(T*) — facs(l) = {bbb}
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The algorithm (correctness)

The non-tier member lemma: Iff o ¢ T
a. Yvivy € fack—1(L(G)),viov; € fack(L(G))
b. Vviom € fackt1(L(G)), € faci(L(G))

The characteristic sample is a set C such that
» Foreveryo ¢ T,

> Yviv € facg—1(L), Iviov, € facy(C).
> Yviov € facgy(L),3 € facy(C).
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The algorithm (correctness)

The non-tier member lemma: Iff o ¢ T
a. Yvivy € fack—1(L(G)),viov; € fack(L(G))
b. Vviom € fackt1(L(G)), € faci(L(G))

The characteristic sample is a set C such that

» For every p € T that appears in R, some v|v; € facg_1(C) such
that vipv, € R

» For all other 7 € T, some € fack41(C) such that ER
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The algorithm (correctness)

The characteristic sample is a set C such that
» Foreveryw € facy(T*) — R, w € fack(C)
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The algorithm (data complexity)

» The minimum size of the characteristic sample is bounded by
O(|3|%), which is constant
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The algorithm (time complexity)

v

For input / and n = ||1||, the KTSLIA runs in O(n?) time
Complexity of facy) (1) is O(n)
Two main steps:

a. Yviv € facg—1(I),viovy € faci(l)

v

v

O(n) . O(m) = 0#?)
b. Yviov, € fack+1(1),v1v2 S fack(l)
O(n) . O(m) = 0#n?)

» One more scan through facy(I) (to find R) = O(n)
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Discussion and conclusion

» Given k, the KTSLIA exactly identifies any TSL; language in
quadratic time with a characteristic sample bounded in size by a
constant w.r.t. that language’s grammar

» The KTSLIA built on specific properties of elements of 7" and
T-—-%
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Discussion and conclusion

» Given k, the KTSLIA exactly identifies any TSL; language in
quadratic time with a characteristic sample bounded in size by a
constant w.r.t. that language’s grammar

» The KTSLIA built on specific properties of elements of 7" and
T-%
» This result motivated by natural language phonotactics

» Is the /¢ present in natural language data?

» How can a stochastic learner build on this A TSLIA?

» How can we extend these ideas to phonological functions (e.g.
[JAKC15, CJH15])?
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Thank you!

We would also like to thank Gunnar Hansson, Jane Chandlee, Jeffrey
Heinz, and three anonymous reviewers for their thoughts and insights.
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