Efficient Learning of Tier-based Strictly k-Local languages

Adam Jardine

Kevin McMullin

Rutgers University

University of Ottawa

The 11th International Conference on Language and Automata Theory and Applications Umeå University, Umeå, Sweden March 6, 2017

Overview

- The Tier-based Strictly k-Local (TSL_k) languages are formal languages where dependencies hold independent of some set of 'ignored' symbols
 - ► TSL_k argued to be a close approximation of attested linguistic sound patterns
- ► We introduce the Tier-based *k*-Strictly Local Inference Algorithm (*k*TSLIA)
- Identifies TSL_k languages in quadratic time; size of sample necessary for identification is bounded by a constant
- We do this by proving new properties about TSL languages that allow the learner to discover which symbols can(not) be ignored

Part 1 (of 2):

- ► Introduce and motivate TSL_k languages
- Identify learning paradigm

Some Notation

- Σ is alphabet; $\rtimes, \ltimes \notin \Sigma$ are **boundary symbols**
- For $w \in \Sigma^*$, *u* is a *k*-factor of *w* if $\forall w \ltimes = v_1 u v_2$ and |u| = k.

$$fac_k(w) \stackrel{\text{def}}{=} \{u \mid u \text{ is a } k \text{-factor of } \rtimes w \ltimes \} \quad \text{if } | \rtimes w \ltimes | > k$$
$$\{ \rtimes w \ltimes \} \quad \text{otherwise}$$

Some Notation

- Σ is alphabet; $\rtimes, \ltimes \notin \Sigma$ are **boundary symbols**
- For $w \in \Sigma^*$, *u* is a *k*-factor of *w* if $\forall w \ltimes = v_1 u v_2$ and |u| = k.

$$fac_k(w) \stackrel{\text{def}}{=} \{u \mid u \text{ is a } k \text{-factor of } \rtimes w \ltimes \} \quad \text{if } | \rtimes w \ltimes | > k$$
$$\{ \rtimes w \ltimes \} \quad \text{otherwise}$$

•
$$fac_3(abbba) = \{ \rtimes ab, abb, bbb, bba, ba \ltimes \}$$

Some Notation

- Σ is alphabet; $\rtimes, \ltimes \notin \Sigma$ are **boundary symbols**
- For $w \in \Sigma^*$, *u* is a *k*-factor of *w* if $\rtimes w \ltimes = v_1 u v_2$ and |u| = k.

$$fac_k(w) \stackrel{\text{def}}{=} \{u \mid u \text{ is a } k \text{-factor of } \rtimes w \ltimes \} \quad \text{if } | \rtimes w \ltimes | > k$$
$$\{ \rtimes w \ltimes \} \quad \text{otherwise}$$

- $fac_3(abbba) = \{ \rtimes ab, abb, bbb, bba, ba \ltimes \}$
- Extends straightforwardly to $fac_k(L)$ for set $L \subseteq \Sigma^*$
- $fac_k(L)$ computed in time linear in ||L||

The Strictly k-Local Languages

► The Strictly k-Local (SL_k) languages [MP71, RHF⁺13] model 'local' dependencies

 $R \subseteq \operatorname{fac}_k(\Sigma^*)$

► The language is the set of strings that contain no banned *k*-factors

$$L(R) \stackrel{\text{def}}{=} \{ w \in \Sigma^* \mid \texttt{fac}_k(w) \cap R = \emptyset \}$$

The Strictly k-Local Languages

► The Strictly k-Local (SL_k) languages [MP71, RHF⁺13] model 'local' dependencies

 $R \subseteq \operatorname{fac}_k(\Sigma^*)$

▶ The language is the set of strings that contain no banned *k*-factors

$$L(R) \stackrel{\text{def}}{=} \{ w \in \Sigma^* \mid \texttt{fac}_k(w) \cap R = \emptyset \}$$

▶ $R = \{ \rtimes ab \}$; $abbba \notin L(R)$, $babab \in L(R)$

- The TSL_k languages [HRT11] generalize SL_k languages with a tier T ⊆ Σ over which R is evaluated
- All symbols in ΣT ignored

$$\Sigma = \{a, b\}, T = \{b\}, R = \{bbb\}$$

abbba , abbaaaba , abaaaba

- ► The TSL_k languages [HRT11] generalize SL_k languages with a **tier** $T \subseteq \Sigma$ over which *R* is evaluated
- All symbols in ΣT ignored

$$\Sigma = \{a, b\}, T = \{b\}, R = \{bbb\}$$

abbba , abbaaaba , abaaaba

- The TSL_k languages [HRT11] generalize SL_k languages with a tier T ⊆ Σ over which R is evaluated
- All symbols in ΣT ignored

$$\Sigma = \{a, b\}, T = \{b\}, R = \{bbb\}$$

 $abbba \notin L$, $abbaaaba \notin L$, $abaaaba \in L$

• More formally, TSL_k grammar is $G = \langle T, R \subseteq fac_k(T^*) \rangle$

$$erase_T(w) \stackrel{\text{def}}{=} erase_T(u) \cdot \sigma \quad \text{if } w = u\sigma, \ u \in \Sigma^*, \sigma \in T$$
$$erase_T(u) \qquad \text{if } w = u\sigma, \ u \in \Sigma^*, \sigma \notin T$$

• More formally, TSL_k grammar is $G = \langle T, R \subseteq \mathtt{fac}_k(T^*) \rangle$

$$erase_T(w) \stackrel{\text{def}}{=} erase_T(u) \cdot \sigma \quad \text{if } w = u\sigma, \ u \in \Sigma^*, \sigma \in T$$
$$erase_T(u) \qquad \text{if } w = u\sigma, \ u \in \Sigma^*, \sigma \notin T$$

• If
$$\Sigma = \{a, b\}, T = \{b\}, erase_T(abbaaaba) = bbb$$

The language is the set of strings that contain no banned k-factors after erasing all non-tier symbols

$$L(G) \stackrel{\text{def}}{=} \{ w \mid \texttt{fac}_k(\texttt{erase}_T(w)) \cap R = \emptyset \}$$

- SL_k and TSL_k languages nontrivially model phonotactics; speakers' knowledge of how sounds are used to form words in their language [Hei10, Hei11, HRT11]
- ► English = {shrimp, blink, bork, flump, ...}
- ► sr \in *R*_{English} (srimp, srit, ... \notin English)

Finnish [Nev10, Odd94]
 p<u>öütä</u>-nä 'table-ESS'
 väkkärä-nä 'pinwheel-ESS'

<u>ulko-ta</u> 'outside-ABL' pappi-na 'priest-ESS'

Finnish [Nev10, Odd94]
 p<u>öütä-nä</u> 'table-ESS' <u>ulko-ta</u> 'outside-ABL'
 v<u>äkkärä-nä</u> 'pinwheel-ESS' <u>pappi-na</u> 'priest-ESS'

• $T = \{ \ddot{o}, \ddot{u}, \ddot{a}, o, u, a \}$ (notice no $\{i, e\}$!)

- Finnish [Nev10, Odd94]
 p<u>öütä-nä</u> 'table-ESS' ulko-ta 'outside-ABL'
 v<u>äkkärä-nä</u> 'pinwheel-ESS' pappi-na 'priest-ESS'
- ► $T = {$ ö,ü,ä,o,u,a $} (notice no {<math>i, e$ }!)
- ▶ $\ddot{a}a \in R_{\text{Finnish}}$: päppi-na \notin Finnish

Tiers are language-specific:		
Turkish:	Vowels	[CS82]
Finnish:	Vowels except {i, e}	[Rin75]
Sundanese:	$\{l, r\}$	[Coh92]
Latin:	$\{l, r, m, g\}$	[Cse10]
Samala:	{s, ∫}	[RW04]
Koorete:	$\{s, \int, b, r, g, d\}$	[MH16]

Learning goal

- For a given Σ and k the set of grammars $\langle T, R \rangle$ is finite
- Thus learnable via enumeration [Gol67]
- ► Is there a smarter, efficient learner?

Learning paradigm

- 'Efficient learning' means exact identification in the limit in polynomial time and data [dlH97]
- ► A characteristic sample I_C for a language L for an algorithm A is a finite set such that for all $I \supseteq I_C$ of L, L = L(A(I))
- ► Goal is *A* that
 - identifies L if I contains I_C for L
 - runs in time polynomial in ||I|| for any input I
 - ► $||I_C||$ for any TSL_k language *L* is polynomial in the size of its grammar

Learning paradigm

- Such an A exists for TSL₂ which runs in $||I||^4$ time [JH16]
- We present an A for any k which runs in $||I||^2$ time

Part 2 (of 2):

- ▶ Define canonical TSL_k grammar
- Show two properties of T and ΣT for canonical grammar
- Show how algorithm learns using these properties

Canonical TSL_k grammar

Definition (Canonical *TSL*_k grammar)

A TSL_k grammar $G = \langle T, R \rangle$ is *canonical* iff for any TSL_k grammar $G' = \langle T', R' \rangle$, L(G) = L(G') and $G \neq G'$ implies $T \subset T'$.

Canonical TSL_k grammar

Definition (Canonical *TSL*_k grammar)

A TSL_k grammar $G = \langle T, R \rangle$ is *canonical* iff for any TSL_k grammar $G' = \langle T', R' \rangle$, L(G) = L(G') and $G \neq G'$ implies $T \subset T'$.

•
$$\Sigma = \{a, b\}$$

 $G_1 = \langle T_1 = \{a, b\}, R_1 = \{ \rtimes bb, bbb, bb \ltimes, abb, bba, bab \} \rangle$
 $G_2 = \langle T_2 = \{b\}, R_2 = \{ \rtimes bb, bbb, bb \ltimes \} \rangle$
 $L(C_1) = L(C_2) = \{ \}$

 $L(G_1) = L(G_2) = \{\lambda, a, aa, ba, ab, aaa, aab, aba, baa, \dots\}$

Canonical TSL_k grammar

Definition (Canonical *TSL*_k grammar)

A TSL_k grammar $G = \langle T, R \rangle$ is *canonical* iff for any TSL_k grammar $G' = \langle T', R' \rangle$, L(G) = L(G') and $G \neq G'$ implies $T \subset T'$.

•
$$\Sigma = \{a, b\}$$

 $G_1 = \langle T_1 = \{a, b\}, R_1 = \{ \rtimes bb, bbb, bb \ltimes, abb, bba, bab \} \rangle$
 $G_2 = \langle T_2 = \{b\}, \quad R_2 = \{ \rtimes bb, bbb, bb \ltimes \} \rangle$

 $L(G_1) = L(G_2) = \{\lambda, a, aa, ba, ab, aaa, aab, aba, baa, \dots\}$

Lemma (The '*R* tier member lemma') If $G = \langle T, R \rangle$ is a canonical TSL_k grammar, then for all $\sigma \in T$ which appear in *R*, there is at least one $v_1 \sigma v_2 \in R$ such that $v_1v_2 \in fac_{k-1}(L(G))$.

• Intuition: Otherwise, σ plays no role in determining language

Lemma (The '*R* tier member lemma') If $G = \langle T, R \rangle$ is a canonical TSL_k grammar, then for all $\sigma \in T$ which appear in *R*, there is at least one $v_1 \sigma v_2 \in R$ such that $v_1v_2 \in fac_{k-1}(L(G))$.

- ▶ Intuition: Otherwise, σ plays no role in determining language
- Example:

 $G = \langle T = \{a, b\}, R = \{bab\} \rangle$

Lemma (The '*R* tier member lemma') If $G = \langle T, R \rangle$ is a canonical TSL_k grammar, then for all $\sigma \in T$ which appear in *R*, there is at least one $v_1 \sigma v_2 \in R$ such that $v_1v_2 \in fac_{k-1}(L(G))$.

- ▶ Intuition: Otherwise, σ plays no role in determining language
- Example:

 $G = \langle T = \{a, b\}, R = \{bab\}\rangle$ ababa \notin L(G), but abba \in L(G)

Lemma (The '*R* tier member lemma') If $G = \langle T, R \rangle$ is a canonical TSL_k grammar, then for all $\sigma \in T$ which appear in *R*, there is at least one $v_1 \sigma v_2 \in R$ such that $v_1v_2 \in fac_{k-1}(L(G))$.

- ▶ Intuition: Otherwise, σ plays no role in determining language
- Example:

 $G = \langle T = \{a, b\}, R = \{bab\} \rangle$ ababa $\notin L(G)$, but $abba \in L(G)$

 $G' = \langle T = \{a, b\}, R' = \{ \rtimes bb, bbb, bb \ltimes, abb, bba, bab \} \rangle$

Lemma (The '*R* tier member lemma') If $G = \langle T, R \rangle$ is a canonical TSL_k grammar, then for all $\sigma \in T$ which appear in *R*, there is at least one $v_1 \sigma v_2 \in R$ such that $v_1v_2 \in fac_{k-1}(L(G))$.

- ▶ Intuition: Otherwise, σ plays no role in determining language
- Example:

 $G = \langle T = \{a, b\}, R = \{bab\} \rangle$ ababa $\notin L(G)$, but $abba \in L(G)$

 $G' = \langle T = \{a, b\}, R' = \{ \rtimes bb, bbb, bb \ltimes, abb, bba, bab \} \rangle$ $ababa, abba \notin L(G')$

Lemma (The '*R* tier member lemma') If $G = \langle T, R \rangle$ is a canonical TSL_k grammar, then for all $\sigma \in T$ which appear in *R*, there is at least one $v_1 \sigma v_2 \in R$ such that $v_1v_2 \in fac_{k-1}(L(G))$.

- ▶ Intuition: Otherwise, σ plays no role in determining language
- Example:

 $G = \langle T = \{a, b\}, R = \{bab\} \rangle$ ababa $\notin L(G)$, but $abba \in L(G)$

 $G' = \langle T = \{a, b\}, R' = \{ \rtimes bb, bbb, bb \ltimes, abb, bba, bab \} \rangle$ $ababa, abba \notin L(G')$

$$G'' = \langle T' = \{b\}, R'' = \{ \rtimes bb, bbb, bb \ltimes \} \rangle$$

$$L(G') = L(G'')!$$

Lemma (The 'non-tier member lemma')

For a canonical TSL_k grammar G, the following hold iff $\sigma \notin T$:

a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$

Lemma (The 'non-tier member lemma') For a canonical TSL_k grammar G, the following hold iff $\sigma \notin T$: a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$

$$\blacktriangleright \Sigma = \{a, b, c\}, G = \langle T = \{b, c\}, R = \{bbb\}\rangle$$

Lemma (The 'non-tier member lemma') For a canonical TSL_k grammar G, the following hold iff $\sigma \notin T$: a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$

►
$$\Sigma = \{a, b, c\}, G = \langle T = \{b, c\}, R = \{bbb\}\rangle$$

abba, *ababa* $\in L(G)$

Lemma (The 'non-tier member lemma')

For a canonical TSL_k grammar G, the following hold iff $\sigma \notin T$:

a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$

►
$$\Sigma = \{a, b, c\}, G = \langle T = \{b, c\}, R = \{bbb\}\rangle$$

abba, ababa $\in L(G)$, abbba $\notin L(G)$,

Lemma (The 'non-tier member lemma')

For a canonical TSL_k grammar G, the following hold iff $\sigma \notin T$:

a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$

►
$$\Sigma = \{a, b, c\}, G = \langle T = \{b, c\}, R = \{bbb\}\rangle$$

 $abba, ababa \in L(G), abbba \notin L(G), abba, abcba \in L(G)$
Properties of canonical grammar

Lemma (The 'non-tier member lemma')

For a canonical TSL_k grammar G, the following hold iff $\sigma \notin T$:

- a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(L(G)), v_1 v_2 \in fac_k(L(G))$

►
$$\Sigma = \{a, b, c\}, G = \langle T = \{b, c\}, R = \{bbb\}\rangle$$

 $abba, ababa \in L(G), abbba \notin L(G), abba, abcba \in L(G)$

Properties of canonical grammar

Lemma (The 'non-tier member lemma')

For a canonical TSL_k grammar G, the following hold iff $\sigma \notin T$:

a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$

b. $\forall v_1 \sigma v_2 \in fac_{k+1}(L(G)), v_1 v_2 \in fac_k(L(G))$

▶
$$\Sigma = \{a, b, c\}, G = \langle T = \{b, c\}, R = \{bbb\}\rangle$$

 $abba, ababa \in L(G), abbba \notin L(G), abba, abcba \in L(G)$
 $abbcba \in L(G), abbba \notin L(G)$

The non-tier member lemma: Iff $\sigma \notin T$:

a. $\forall v_1v_2 \in \text{fac}_{k-1}(L(G)), v_1\sigma v_2 \in \text{fac}_k(L(G))$ b. $\forall v_1\sigma v_2 \in \text{fac}_{k+1}(L(G)), v_1v_2 \in \text{fac}_k(L(G))$

$$\Sigma = \{a, b, c\}, \ G = \langle T = \{b, c\}, R = \{bbb\}\rangle$$

 The non-tier member lemma uniquely identifies non-tier members

The *k*TSLIA: σ from *T* hypothesis for which

- a. $\forall v_1v_2 \in fac_{k-1}(I), v_1\sigma v_2 \in fac_k(I)$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$
- ► Given I, the Tier-based Strictly k-Local Induction Algorithm (kTSLIA) searches through fac_{k-1}(I), fac_k(I), fac_{k+1}(I)

The *k*TSLIA: σ from *T* hypothesis for which

- a. $\forall v_1v_2 \in fac_{k-1}(I), v_1\sigma v_2 \in fac_k(I)$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$
- ► Given I, the Tier-based Strictly k-Local Induction Algorithm (kTSLIA) searches through fac_{k-1}(I), fac_k(I), fac_{k+1}(I)
- Any σ ∈ Σ that satisfies both (a) and (b) removed from from hypothesis for T

The *k*TSLIA: σ from *T* hypothesis for which

- a. $\forall v_1v_2 \in fac_{k-1}(I), v_1\sigma v_2 \in fac_k(I)$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$
- ► Given I, the Tier-based Strictly k-Local Induction Algorithm (kTSLIA) searches through fac_{k-1}(I), fac_k(I), fac_{k+1}(I)
- Any $\sigma \in \Sigma$ that satisfies both (a) and (b) removed from from hypothesis for *T*
- ▶ Hypothesis for *R* set to all remaining $fac_k(T^*)$ not in $fac_k(I)$

Target:
$$G_* = \langle T_* = \{b\}, R_* = \{bbb\} \rangle, \Sigma = \{a, b\}, k = 3$$

String	2-factors	3-factors	4-factors

String	2-factors	3-factors	4-factors
λ	\rtimes K		

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	times a,a times	$\rtimes a \ltimes$	

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	$ times a,a\ltimes$	$\rtimes a \ltimes$	
b	$\rtimes \overline{b,b}\ltimes$	$\rtimes b \ltimes$	

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
а	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b,b\ltimes$	times b times	
bb	bb	times bb, bb times	$ times bb \ltimes$

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	$ times a,a\ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b,b\ltimes$	times b times	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$ ightarrow$ <i>aaa</i> , <i>aaa</i> \ltimes

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	$ times a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b,b\ltimes$	$ times b \ltimes$	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	$ times ba, bab, ab \ltimes$	$\rtimes bab, bab \ltimes$

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	times a,a times	$\rtimes a \ltimes$	
b	$\rtimes b,b\ltimes$	$\rtimes b \ltimes$	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa\ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	times ba, bab, ab times	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	$ times a, a \ltimes$	$\rtimes a \ltimes$	
b	$\rtimes b,b\ltimes$	$\rtimes b \ltimes$	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa\ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	times ba, bab, ab times	$\rtimes bab, bab \ltimes$
abba	_	$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa	—	aab, aba, baa	$\rtimes aab, aaba,$
			$abaa, baa\ltimes$

Target: $G_* = \langle T_* = \{b\}, R_* = \{bbb\}\rangle, \Sigma = \{a, b\}, k = 3$ **Sample:** $\{\lambda, a, b, bb, aaa, bab, abba, aabaabaa\}$

String	2-factors	3-factors	4-factors
λ	\rtimes K		
a	$ times a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	ightarrow b ightarrow	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	times ba, bab, ab times	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	imesaab, aaba, abaa, baa $ imes$

a.
$$\forall v_1v_2 \in fac_{k-1}(I), v_1\sigma v_2 \in fac_k(I)$$

b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	$ times a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	$\rtimes b \ltimes$	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	times ba, bab, ab times	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	imesaab, aaba, abaa, baa $ imes$

- a. $\forall v_1v_2 \in fac_{k-1}(I), v_1\sigma v_2 \in fac_k(I)$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
a	$ times a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	ightarrow b ightarrow	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	times ba, bab, ab times	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	imesaab, aaba, abaa, baa $ imes$

- a. $\forall v_1 v_2 \in fac_{k-1}(I), v_1 \sigma v_2 \in fac_k(I)$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	ightarrow b ightarrow	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	times ba, bab, ab times	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	imesaab, aaba, abaa, baa $ imes$

- a. $\forall v_1 v_2 \in fac_{k-1}(I), v_1 \sigma v_2 \in fac_k(I)$
- **b.** $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	ightarrow b ightarrow	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	$\rtimes ba, bab, ab \ltimes$	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba \ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	imesaab, aaba, abaa, baa $ imes$

- a. $\forall v_1 v_2 \in fac_{k-1}(I), v_1 \sigma v_2 \in fac_k(I)$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$

Target: $G_* = \langle T_* = \{b\}, R_* = \{bbb\}\rangle, \Sigma = \{a, b\}, k = 3$ **Sample:** $\{\lambda, a, b, bb, aaa, bab, abba, aabaabaa\}$

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
а	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	ightarrow b ightarrow	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	$\rtimes ba, bab, ab \ltimes$	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba \ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	ightarrow aab, aaba,
			$abaa, baa\ltimes$

a.
$$\forall v_1 v_2 \in fac_{k-1}(I), v_1 \sigma v_2 \in fac_k(I)$$

b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$

Target: $G_* = \langle T_* = \{b\}, R_* = \{bbb\}\rangle, \Sigma = \{a, b\}, k = 3$ **Sample:** $\{\lambda, a, b, bb, aaa, bab, abba, aabaabaa\}$

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	$\rtimes b \ltimes$	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa \ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	$\rtimes ba, bab, ab \ltimes$	$ ightarrow bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	ightarrow aab, aaba,
			$abaa, baa\ltimes$

a. $\forall v_1 v_2 \in \text{fac}_{k-1}(I), v_1 \sigma v_2 \in \text{fac}_k(I)$ b. $\forall v_1 \sigma v_2 \in \text{fac}_{k+1}(I), v_1 v_2 \in \text{fac}_k(I)$

Target: $G_* = \langle T_* = \{b\}, R_* = \{bbb\}\rangle, \Sigma = \{a, b\}, k = 3$ **Sample:** $\{\lambda, a, b, bb, aaa, bab, abba, aabaabaa\}$

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
a	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	$\rtimes b \ltimes$	
bb	bb	$\rtimes bb, bb \ltimes$	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa\ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	$\rtimes ba, bab, ab \ltimes$	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	ightarrow aab, aaba,
			$abaa, baa\ltimes$

a. $\forall v_1 v_2 \in \text{fac}_{k-1}(I), v_1 \sigma v_2 \in \text{fac}_k(I)$ b. $\forall v_1 \sigma v_2 \in \text{fac}_{k+1}(I), v_1 v_2 \in \text{fac}_k(I)$

Target: $G_* = \langle T_* = \{b\}, R_* = \{bbb\} \rangle, \Sigma = \{a, b\}, k = 3$ **Sample:** $\{\lambda, a, b, bb, aaa, bab, abba, aabaabaa\}$

String	2-factors	3-factors	4-factors
λ	\rtimes \ltimes		
а	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	times b,b times	$\rtimes b \ltimes$	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa\ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	$\rtimes ba, bab, ab \ltimes$	$\rtimes bab, bab \ltimes$
abba		$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa		aab, aba, baa	ightarrow aab, aaba,
			$abaa, baa\ltimes$

a. $\forall v_1 v_2 \in fac_{k-1}(I), v_1 \sigma v_2 \in fac_k(I)$ b. $\forall v_1 \sigma v_2 \in fac_{k+1}(I), v_1 v_2 \in fac_k(I)$

Target: $G_* = \langle T_* = \{b\}, R_* = \{bbb\}\rangle, \Sigma = \{a, b\}, k = 3$ **Sample:** $\{\lambda, a, b, bb, aaa, bab, abba, aabaabaa\}$

String	2-factors	3-factors	4-factors
λ	\rtimes K		
а	$\rtimes a, a \ltimes$	$\rtimes a \ltimes$	
b	$ times b,b\ltimes$	$\rtimes b \ltimes$	
bb	bb	times bb, bb times	$ ightarrow bb \ltimes$
aaa	aa	$\rtimes aa, aaa, aa\ltimes$	$\rtimes aaa, aaa \ltimes$
bab	ba, ab	$\rtimes ba, bab, ab \ltimes$	$\rtimes bab, bab \ltimes$
abba	—	$\rtimes ab, abb, bba, ba\ltimes$	$\rtimes abb, abba, bba \ltimes$
aabaabaa	—	aab, aba, baa	ightarrow aab, aaba,
			$abaa, baa\ltimes$

▶ $T = \{b\}, R = fac_3(T^*) - fac_3(I) = \{bbb\}$

23/32

The algorithm (correctness)

The non-tier member lemma: Iff $\sigma \notin T$:

a.
$$\forall v_1v_2 \in \texttt{fac}_{k-1}(L(G)), v_1\sigma v_2 \in \texttt{fac}_k(L(G))$$

b. $\forall v_1 \sigma v_2 \in fac_{k+1}(L(G)), v_1 v_2 \in fac_k(L(G))$

The characteristic sample is a set C such that

- For every $\sigma \notin T$,
 - $\forall v_1v_2 \in fac_{k-1}(L), \exists v_1\sigma v_2 \in fac_k(C).$
 - ► $\forall v_1 \sigma v_2 \in fac_{k+1}(L), \exists v_1 v_2 \in fac_k(C).$

The algorithm (correctness)

The non-tier member lemma: Iff $\sigma \notin T$:

- a. $\forall v_1v_2 \in fac_{k-1}(L(G)), v_1\sigma v_2 \in fac_k(L(G))$
- b. $\forall v_1 \sigma v_2 \in fac_{k+1}(L(G)), v_1 v_2 \in fac_k(L(G))$

The characteristic sample is a set C such that

- ► For every $\rho \in T$ that appears in R, some $v_1v_2 \in fac_{k-1}(C)$ such that $v_1\rho v_2 \in R$
- ► For all other $\tau \in T$, some $v_1 \tau v_2 \in fac_{k+1}(C)$ such that $v_1 v_2 \in R$

The algorithm (correctness)

The characteristic sample is a set C such that

• For every
$$w \in fac_k(T^*) - R$$
, $w \in fac_k(C)$

The algorithm (data complexity)

► The minimum size of the characteristic sample is bounded by O(|Σ|^k), which is constant

The algorithm (time complexity)

- ► For input *I* and n = ||I||, the *k*TSLIA runs in $O(n^2)$ time
- Complexity of $fac_{k(\pm 1)}(I)$ is $\mathcal{O}(n)$
- Two main steps:

a.
$$\underbrace{\forall v_1 v_2 \in fac_{k-1}(I)}_{\mathcal{O}(n)}, \underbrace{v_1 \sigma v_2 \in fac_k(I)}_{\mathcal{O}(n)} = \mathcal{O}(n^2)$$

b.
$$\underbrace{\forall v_1 \sigma v_2 \in fac_{k+1}(I)}_{\mathcal{O}(n)}, \underbrace{v_1 v_2 \in fac_k(I)}_{\mathcal{O}(n)} = \mathcal{O}(n^2)$$

• One more scan through $fac_k(I)$ (to find R) = O(n)

Discussion and conclusion

- ▶ Given k, the kTSLIA exactly identifies any TSL_k language in quadratic time with a characteristic sample bounded in size by a constant w.r.t. that language's grammar
- The *k*TSLIA built on specific properties of elements of *T* and $T \Sigma$

Discussion and conclusion

- ▶ Given k, the kTSLIA exactly identifies any TSL_k language in quadratic time with a characteristic sample bounded in size by a constant w.r.t. that language's grammar
- The *k*TSLIA built on specific properties of elements of *T* and $T \Sigma$
- This result motivated by natural language phonotactics
 - Is the I_C present in natural language data?
 - ▶ How can a stochastic learner build on this *k*TSLIA?
 - ► How can we extend these ideas to phonological *functions* (e.g. [JAKC15, CJH15])?

Thank you!

We would also like to thank Gunnar Hansson, Jane Chandlee, Jeffrey Heinz, and three anonymous reviewers for their thoughts and insights.

References I

- [CJH15] Jane Chandlee, Adam Jardine, and Jeffrey Heinz, *Learning repairs for marked structures*, Proceedings of the 2015 Annual Meeting on Phonology, LSA, 2015.
- [Coh92] Abigail Cohn, *The consequences of dissimilation in Sundanese*, Phonology **9** (1992), 199–220.
 - [CS82] George N. Clements and Engin Sezer, Vowel and consonant disharmony in Turkish, The Structure of Phonological Representations (Part II) (Harry van der Hulst and Norval Smith, eds.), Foris, Dordrecht, 1982.
- [Cse10] András Cser, *The -alis/aris- allomorphy revisited*, Variation and change in morphology: selected papers from the 13th international morphology meeting (D. Kastovsky, F. Rainer, W. U. Dressler, and H. C. Luschützky, eds.), Philadelphia: John Benjamins, 2010, pp. 33–51.
- [dlH97] Colin de la Higuera, *Characteristic sets for polynomial* grammatical inference, Machine Learning **27** (1997), no. 2, 125–138.
References II

- [Gol67] Mark E. Gold, *Language identification in the limit*, Information and Control **10** (1967), 447–474.
- [Hei10] Jeffrey Heinz, Learning long-distance phonotactics, LI 41 (2010), 623–661.
- [Hei11] _____, Computational phonology part I: Foundations, Language and Linguistics Compass 5 (2011), no. 4, 140–152.
- [HRT11] Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner, *Tier-based strictly local constraints for phonology*, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (Portland, Oregon, USA), Association for Computational Linguistics, June 2011, pp. 58–64.
- [JAKC15] Adam Jardine, Angeliki Athanasopoulou, Kristian, and Peter Cole, *Banyaduq prestopped nasals: Synchrony and diachrony*, Oceanic Linguistics **54** (2015), 548–578.
 - [JH16] Adam Jardine and Jeffrey Heinz, *Learning tier-based strictly 2-local languages*, Transactions of the Association for Computational Linguistics 4 (2016), 87–98.

References III

- [MH16] Kevin McMullin and Gunnar Ólafur Hansson, Long-distance phonotactics as Tier-Based Strictly 2-Local languages, Proceedings of the Annual Meeting on Phonology 2015 (Adam Albright and Michelle A. Fullwood, eds.), 2016.
- [MP71] Robert McNaughton and Seymour Papert, *Counter-free automata*, MIT Press, 1971.
- [Nev10] Andrew Nevins, *Locality in vowel harmony*, Linguistic Inquiry Monographs, no. 55, MIT Press, 2010.
- [Odd94] David Odden, *Adjacency parameters in phonology*, Language **70** (1994), no. 2, 289–330.
- [RHF⁺13] James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean Wibel, *Cognitive and sub-regular complexity*, Formal Grammar, Lecture Notes in Computer Science, vol. 8036, Springer, 2013, pp. 90–108.
 - [Rin75] Catherine Ringen, Vowel harmony: Theoretical implications, Ph.D. thesis, Indiana University, 1975.
 - [RW04] Sharon Rose and Rachel Walker, A typology of consonant agreement as correspondence, Language **80** (2004), 475–531.