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Abstract This paper presents evidence that tone well-formedness patterns share a property
of melody-locality, and shows how patterns with this property can be learned. Essentially,
a melody-local pattern is one in which constraints over an autosegmental melody operate
independently of constraints over the string of tone-bearing units. This includes a range of
local tone patterns, long-distance tone-patterns, and their interactions. These results are ob-
tained from the perspective of formal language theory and grammatical inference, which
focus on the structural properties of patterns, but the implications extend to other learning
frameworks. In particular, a melody-local learner can induce attested tone patterns that can-
not be learned by the tier projection learners that have formed the basis of work on learning
long-distance phonology. Thus, melody-local learning is a necessary property for learning
tone. It is also shown how melody-local learners are more restrictive than learning directly
over autosegmental representations
Keywords: Tone, learnability, computational phonology, representation

1 Introduction

1.1 The proposal

Long-distance generalizations pose a challenge for learning, because a learner must discover
dependencies that may hold over an unbounded distance. Work on learning phonotactics
has made gains towards solving this problem by adopting representational mechanisms that
allow a learner to discover long-distance dependencies. Specifically, previously proposed
phonotactic learners have either made reference to precedence relations (Heinz, 2010a), tier
projection (Hayes and Wilson, 2008; Goldsmith and Riggle, 2012; Jardine and Heinz, 2016;
McMullin and Hansson, 2015; Jardine and McMullin, 2017; Gallagher and Wilson, 2018),
or a generalization of the two (Graf, 2017).
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However, the specific problem of learning tonal patterns has not been yet studied in this
way. This paper fills this gap by studying the learnability of long-distance phonotactic pat-
terns in tone. This reveals that previously proposed representational mechanisms for learning
phonotactic patterns are insufficient for learning the types of patterns that are found in tone.
This article instead argues that long-distance phonotactic patterns in tone must be learned
using a distinct notion of a melody, or string of unique components of surface tone. Evidence
is given below that tone patterns share a property of melody-locality, meaning that they are
describable by the intersection of a set of local constraints over strings of tone-bearing units
(TBUs) and a set of local constraints over a melody.

For example, in Prinmi (Tibeto-Burman, China; Ding, 2006; Hyman, 2009), words must
have exactly one span of H tones, which can be either one (1a) or two (1b) TBUs long. In (1)
below, schematic representations of the forms as strings of H and L TBUs are given on the
left. In the full transcription, as throughout this paper, an acute accent on the vowel indicates
a H toned TBU; all other TBUs are low (L).

(1) Prinmi (Ding, 2006, p. 14)
a. HLLL [b1́bôobôoge] ‘as for roasted flour’
b. LHHL [tõpúm3́ìe] ‘donkey tail’
c. *HHHL
d. *HLLH
e. *LLLL

Spans of more than two consecutive H-toned TBUs are illicit (1c), as are two distinct
spans of H-toned moras (1d). The Prinmi pattern can thus be captured by the satisfaction
of three constraints: one banning three consecutive H-toned TBUs (2a), one banning HLH
sequences in the melody (2b; this essentially functions like Yip 2002’s *TROUGH), and one
banning melodies with a single L (2c; this functions like Hyman 2009’s OBLIGATORINESS

constraint for H tones).

(2) a. *HHH (TBU string): No HHH sequence in the string of TBUs.
b. *HLH (melody): No HLH sequence in the melody.
c. *#L# (melody): No all-L melody.

Here, ‘melody’ is used in the sense of a string of tones on an independent tonal tier (a
la Leben, 1973; Williams, 1976; Goldsmith, 1976). As the autosegmental representations
(ARs) in (3) of the forms in (1) show, the melody of the ill-formed word *HLLH in (1d)
contains a HLH sequence (3d). Likewise, the melody of *LLLL in (1e) is, when boundaries
are made explicit, #L# (3e). In contrast, the ARs of HLLL and LHHL do not contain either
of these substrings in their melodies (3a, b).

(3) a. H L

µ µ µ µ

b. L H L

µ µ µ µ

[b1́bôoôoge] (=1a) [tõpúm3́ìe] (=1b)

c. * H L

µ µ µ µ

d. * H L H

µ µ µ µ

e. * L

µ µ µ µ

(=1c) (=1d) (=1e)

The surface pattern in Prinmi is thus describable by taking the intersection of the set of
forms that satisfy (2a) and the set of forms that satisfy (2b) and (2c). As seen in the examples
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in 3, this assumes melodies that obey the Obligatory Contour Principle (OCP; Leben, 1973;
Odden, 1986; Myers, 1997). As discussed below, this allows local constraints over melodies
to capture long-distance generalizations such as “there cannot be two distinct H spans in a
word.”

The first major goal of this paper is to define melody-local patterns as those that, like
Prinmi, are describable with the intersection of constraints on sequences of consecutive
TBUs and constraints on sequences of tones in the melody. Crucially, these grammars oper-
ate not over ARs directly, but on strings of TBUs and strings of melodies. This thus forms
a strong hypothesis about tone: that constraints either refer to the melody or to the string of
TBUs, but cannot refer to arbitrary associations between them.

For example, melody-local grammars allow a melody constraint as in (2b) *HLH that is
violated when an HLH sequence appears in the melody, but do not allow a constraint like as
in (4a), which is violated only when both an HLH sequence occurs in the melody and both
Hs are doubly-associated.

(4) A constraint that is impossible under the melody-local hypothesis

a. * H L H

µ µ µ µ

b. H L H

µ µ µ µ µ µ

, H L H

µ µ µ µ µ µ

, * H L H

µµµ µµµ µ µ µ µµµ µµµ

As shown in (4b), such a constraint is evaluated as a kind of non-local conjunction:
it allows one H or the other to spread, but not both at once. As discussed in §6.1, such a
constraint excluded by the melody-local hypothesis, as (4a) combines melody information
and local information in a single constraint. This prediction is borne out by the typology of
tone, as this constraint is unattested in tone.

Thus, the hypothesis that tone is melody-local is a predictive one that makes princi-
pled distinctions between attested long-distance patterns and logically possible, yet unat-
tested patterns. These predictions are largely borne out because, as detailed below, local and
long-distance well-formedness tone patterns are predominantly melody-local. This includes
patterns like Prinmi, in which local and long-distance generalizations interact. A somewhat
problematic case, in Karanga Shona, is also discussed, but it is also largely melody-local.

1.2 Contrast with existing models of long-distance learning

That tone patterns are melody-local has consequences for learnability. The other major goal
of this paper is to show that melody-local patterns can be efficently learned. This is con-
trasted with previously proposed phonotactic learners, which cannot learn the attested tone
patterns discussed in this paper. The conclusion, then, is that melody-localily is a necessary
property for learning tone.

While the melody described above is a tier in Goldsmith (1976)’s original conception of
the term, it is demonstrably distinct from the tier projection representations used throughout
the literature on learning phonology. Tier projections are used by learners based in infor-
mation theory (Goldsmith and Riggle, 2012), maximum entropy (Hayes and Wilson, 2008;
Gallagher and Wilson, 2018), and grammatical inference (McMullin and Hansson, 2015;
Jardine and Heinz, 2016). However, tier projections cannot capture the full range of tone
patterns described here, in particular because they cannot distinguish between units that are
adjacent and those that are non-adjacent in the surface string of TBUs.
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Prinmi is a useful illustration. Tier projection models capture long-distance patterns by
‘ignoring’ some subset of units in the surface string (Heinz et al., 2011). In Prinmi, the non-
local constraint against multiple H-tone spans would have to be captured by projecting a tier
of H-toned TBUs, ignoring L-toned TBUs. This is depicted below in (5).

(5) a. * H H
↑ ↑
H L L H (=1d)

b. H H
↑ ↑

L H H L (=1b)

Forms like (1d) with multiple H-tone spans could then be ruled out by a *HH con-
straint operating on the tier projection. However, since Prinmi allows spreading of H-tone
up to two TBUs, it is possible for there to be more than one H-toned TBU to appear in the
string, as shown above in (5b). Thus, the *HH constraint would also incorrectly rule out
well-formed words like (1b). Thus, tier projection cannot distinguish between well- and ill-
formed words in a pattern like Prinmi’s, because it cannot distinguish between consecutive
and non-consecutive H-toned TBUs. As discussed in §5, the same is true for the learners
based on precedence (Heinz, 2010a) or intervals (Graf, 2017). This is not to say that tier
projections are not necessary or useful in phonology. Indeed, TBUs are a projection of sorts
from the surface string of segmental information. However, the goal of this article is to show
that tier projections alone are not sufficient for learning tone.

1.3 Scope

Thus, melody-local learning is a novel, and necessary, step towards understanding how tone
is learned. In a way, this result confirms the utility of the autosegmental concepts of an inde-
pendent melody and the OCP. The novel contribution is to rigorously apply these concepts
using formal language theory, the formal study of patterns (Hopcroft et al., 2006), and gram-
matical inference, which is concerned with the inductive learning of patterns from finite sets
of examples (de la Higuera, 2010; Heinz et al., 2016). This follows previous formal work on
ARs (Bird and Ellison, 1994; Kornai, 1995; Jardine, 2017) and expands on it with a concrete
learnability result.

The value in formal language-theoretic descriptions is that they tell us about the struc-
tural properties of a pattern. For example, the *HHH constraint in (2a) is a strictly local
constraint (McNaughton and Papert, 1971; Rogers and Pullum, 2011), because it refers to
sequences of adjacent units in a string. We can also prove when a pattern cannot be cap-
tured by tier projection. This tells us when a learner that operates over particular kinds of
constraints—e.g. strictly local or based on tier projection—are guaranteed to fail to learn the
pattern, no matter how much data it is exposed to.

Thus, this paper abstracts away from the problems of learning in the face of exceptions,
or learning gradient generalizations, which is the focus of much work on phonotactic learn-
ing (e.g., Hayes and Wilson, 2008; Gallagher and Wilson, 2018). This is not to say that these
are not important problems. However, they are a separate issue from identifying the right
kinds of representations over which learners operate. A learner paying attention to strictly
local information will never learn a long-distance pattern, no matter how sophisticated its
statistics. Similarly, a tier projection learner, stochastic or no, will never learn a pattern that
cannot be represented with tier projection. Thus, in order to clearly focus on these structural
properties, this paper adopts a categorical learning approach.

However, for the reasons just stated, the results of this paper bear directly on proba-
bilistic learners. Stochastic learning often builds on results from the categorical perspective
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(de la Higuera, 2010; Heinz and Rogers, 2013). Indeed, maximum entropy learners for long-
distance phonotactics (Hayes and Wilson, 2008; Gallagher and Wilson, 2018; Gouskova and
Gallagher, pear) share the same basic tier projection structure as formal language-theoretic
characterizations of long-distance phonotactics (Heinz et al., 2011). Thus, they will not be
able to learn the full range of tone patterns discussed in this paper. Section 5.3 sketches how
a maximum entropy model can build on the results of this paper.

Finally, as discussed in more detail below, this paper also abstracts away from the prob-
lem of learning alternations, and instead focuses on static well-formedness generalizations.
Tonal phonologies do not only consist of well-formedness patterns, and very often are an-
alyzed terms of a complex of interacting processes mapping underlying forms to surface
forms. The learning of such a complex system is an enormous task, and so this paper adopts
a piecemeal approach by first focusing on phonotactics. There is support for such an ap-
proach. Empirically, phonotactic knowledge has been shown to aid learning of alternations
(Pater and Tessier, 2003). Theoretically, proposals for learning alternations can be based
directly on results on the learnability of static generalizations (Chandlee and Heinz, 2018).
Thus, following, for example, Hayes and Wilson (2008) and Heinz (2010a), this paper views
learning phonotactics as an important step towards solving the more general problem of
learning entire phonologies.

1.4 Outline of the paper

This paper is structured as follows. §2 defines a property of melody-locality and §3 surveys a
range of local and non-local tone patterns that share this property. §4 demonstrates a learner
for melody-local patterns, and §5 contrasts this learner with established learners based on
precedence and tier projection. §6 discusses representational issues and future work, and §7
concludes. An Appendix collects formal definitions and proofs for concepts used throughout
the paper.

2 The proposal

This paper proposes a formal characterization of tonal well-formedness that 1) checks lo-
cal constraints over the tone specifications of TBUs and 2) checks local constraints over
the tonal melodies. This forms a strong hypothesis that constraints can refer either to the
melody or to the string of TBUs, but no single constraint can refer to both at the same time.
This property of melody-locality is obtained through studying phonological well-formedness
through the lens of formal language theory.

2.1 What is a pattern?

The term ‘pattern’ in this paper refers to a well-formedness generalization holding over
output representations. For example, in Kagoshima Japanese (Japonic, Japan), words have
a H tone either on the penultimate or final syllable (Hirayama, 1951; Haraguchi, 1977;
Kubozono, 2012). Note that this can create contrasts, as in the minimal pair (6a) [hána]
‘nose’ and (6e) [haná] ‘flower’.

(6) Kagoshima Japanese (Haraguchi, 1977, p. 195)
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a. hána ‘nose’ HL
b. sakúra ‘cherry blossom’ LHL
c. kagarı́bi ‘watch fire’ LLHL
d. kagaribı́-ga ‘watch fire’ + NOM LLLHL
e. haná ‘flower’ LH
f. usagı́ ‘rabbit’ LLH
g. irogamı́ ‘color paper’ LLLH
h. irogami-gá ‘color paper’ + NOM LLLLH

This generalization is a set of well-formed strings of H-toned and L-toned TBUs.1 Let
us call this set LKJ.

(7) LKJ = {H, HL, LHL, LLHL, LLLHL, ..., LH, LLH, LLLH, LLLLH, ...}

This set includes all and only the strings of Hs and Ls such that a single H falls on either
the ultimate or penultimate position. Strings such as *LHLLL, which do not conform to the
generalization, are not members of the set.

Note that the ellipses indicate that LKJ is an infinite set. Thus, for example, LLLLLLLHL
is in LKJ, even if a word of such length may not exist. However, this models the fact that
speakers of Kagoshima Japanese would find such a word well-formed, if it were created
through morphological processes or borrowing. Indeed, borrowing of English words has
created long words such as [makudonarúdo] ‘McDonald’s’, which nevertheless conform to
the generalization (Kubozono, 2012).

Tone presents an interesting challenge in isolating well-formedness generalizations.
Many existing analyses of tone systems are heavily derivational, with multiple levels of
interacting processes and well-formedness generalizations. A prime example discussed be-
low is unbounded tone plateauing in Luganda (Hyman and Katamba, 2010), in which two
underlying H tones merge to create a single H-toned plateau. In some cases, the superimpo-
sition of phrasal boundary tones creates forms that superficially violate this generalization
(see Hyman and Katamba, 2010, p. 72). However, this does not mean that the plateauing
generalization is not psychologically real, as it is still plays a crucial role in the overall
phonology of the language (Hyman and Katamba, 1993, 2010).2 This paper thus takes ex-
amples from analyses for which there is a clear well-formedness generalization that holds at
some significant level posited by the analyst (as with Kagoshima Japanese and unbounded
tone plateauing in Luganda, usually the lexical or early phrasal phonology).

By doing so, we can focus on how generalizations like unbounded tone plateauing can
be learned, abstracting away from their position in a larger phonology. This is not unlike iso-
lating a particular process to study how it would be formalized with a single rule, or fragment
of OT ranking. In terms of learning, this is somewhat of an idealization, as it assumes the
learner has already identified the right domain and level of derivation for application of the
process. However, this idealization allows us to focus directly on the problem: even given all

1 Pierrehumbert and Beckman (1988) propose an underspecification-based model for (Tokyo) Japanese.
A partial string-based representation of this model would instead represent the L-toned TBUs as ∅ TBUs,
indicating that they are not linked to any tone, and H, which indicates the TBU linked to the H tone. How
we might fully capture the spirit of underspecification models via string representations is briefly discussed
in §6.3.

2 Hyman and Katamba (2010)’s account of Luganda is derivational, explicitly distinguishing between
lexical and post-lexical levels of the phonology. This paper follows this assumption that the phonology can
be organized into distinct sub-phonologies, although it abstracts away from the details of how these are
organized. In a constraint-based framework, this would require a stratally organized grammar (Kiparsky,
2000; Bermúdez-Otero, 2017).
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of this information, previous learning models cannot learn all of the tone well-formedness
generalizations surveyed in the following sections.

2.2 What is a local pattern?

Armed with a notion of well-formedness generalizations as sets, we can rigorously define
a notion of locality. The term ‘local’ is oft-used but can have various meanings, sometimes
meaning strict adjacency (Gafos, 1996; Chiośain and Padgett, 2001) or adjacency on a tier
(Odden, 1994). This paper adopts the following definition, based on the strictly local class
of formal languages (McNaughton and Papert, 1971; Rogers and Pullum, 2011).

(8) A local grammar is a finite set S of forbidden substrings. Let L(S) be the set of strings
not containing any element in S; we say that S describes L(S). A pattern L is local iff
there is a finite set S of forbidden substrings that describes it.

A substring is simply a sequence of symbols in a string (including itself); the substrings
of the string LLH are L, H, LL, LH, and LLH. For example, the Kagoshima Japanese pattern
LKJ is local because it is describable with the following local grammar SKJ, which is a set
of forbidden substrings of length at most 3. Here, # is an extra symbol indicating a word
boundary.

(9) SKJ = {#L#,HH,HLL,HLH,LL#}

The grammar SKJ can be interpreted as follows: #L# bans monosyllabic L words; HH
bans words with two adjacent H tones; HLL and HLH ban words in which a H appears
anywhere to the left of penultimate position; and LL# requires that either the penult or final
syllable is H (recall that they both cannot be H, as HH has been banned). The set LKJ is thus
exactly the set of strings of Ls and Hs containing none of the substrings in SKJ.

Forbidden substring constraints are computationally very simple (Rogers and Pullum,
2011; Rogers et al., 2013) and, as to be shown in more detail in §4, are efficiently learnable
(Garcı́a et al., 1990; Heinz, 2010a). This stems from their cognitive interpretation. For a set
S of forbidden substrings of at most length k, we can check to see if a string is well-formed
with respect to S simply by scanning through the string with a window of size k. This is
illustrated for LKJ and its grammar SKJ in (10) below.

(10) a. # L L H L #
X #LL

# L L H L #
X LLH

# L L H L #
X LHL

# L L H L #
X HL#

b. # L H L L #
X #LH

# L H L L #
X LHL

# L H L L #
7 HLL

Both (10a) and (b) show a scanning window of length 3 (indicated by a box) move
sequentially through the strings #LLHL# and #LHLL#. Below each box is the substring
of length 3 that currently appears in the window. If at any time one of the substrings in
SKJ appears in the window, the form is judged by the procedure to be ungrammatical. In
(10a), the scanner moves all the way through the string without encountering a substring
from SKJ, so the form is judged to be grammatical. In (10b), the scanner encounters the
forbidden substring HLL∈ SKJ on the third step, and so *LHLL is correctly judged to be
ungrammatical. Thus, patterns that can be described with forbidden substring grammars are
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local because their well-formedness generalizations depend entirely on information that can
be detected in some fixed window.

Local patterns can thus be induced by a learner that scans through the input in this man-
ner, remembering the sequences it has seen in its fixed window. This procedure is explained
in more detail in §4.2. While we have defined this in terms of formal language theory, this
same basic structure is used widely in natural language processing and learners in theoretical
phonology; n-gram models (Jurafsky and Martin, 2009) and the MaxEnt models in Hayes
and Wilson (2008) (with the exception of that for Shona) are local in this sense.

Kagoshima Japanese is just one example of a local pattern, but constraints that are local
in this way are common in tone. Constraints referring to some position near the word edge
(like that in Kagoshima Japanese), bounded spreading (Hyman, 2007, p.7), local interpre-
tations of the Obligatory Contour Principle that forbid H tones on adjacent TBUs (such as
proposed by Myers 1997, pp. 847–8, for Shona; see also *CLASH in Zoll 2003, pp. 239–40,
for Kukya), a local *HLH constraint that forbids a single L-toned TBU in between two Hs
(e.g., Kihunde; Goldsmith, 1990, p. 36), and ‘edge-based’ constraints that restrict contours
or plateaus to a word edge (e.g. as in Mende; Leben, 1973, pp. 64-5), all conform to this
definition of locality.

2.3 Non-local patterns

However, there are also well-formedness generalizations in tone that are non-local ac-
cording to this definition. One common non-local pattern is unbounded tone plateauing
(UTP) (Kisseberth and Odden, 2003; Hyman, 2011; Jardine, 2016), in which surface well-
formedness dictates that only one plateau, or unbroken stretch, of high-toned TBUs is al-
lowed in a domain. The following examples are from Luganda (Bantu, Uganda; Hyman and
Katamba, 2010; Hyman, 2011). Underlying forms are given on the left. The output forms
here are what Hyman and Katamba (2010) call “intermediate forms”—the output of the
phonology before the imposition of phrasal boundary tones.

(11) Luganda (Hyman and Katamba, 2010, pp. 71, 78)
a. /kitabo/ ‘book’ kitabo LLL
b. /mutéma/ ‘chopper’ mutéma LHL
c. /kisikı́/ ‘log’ kisikı́3 LLH
d. /mutéma+bisikı́/ ‘log chopper’ mutémá+bı́sı́kı́ LHHHHH
e. *mutéma+bisikı́ *LHLLLH

Examples (11a) through (c) show that forms with no underlying Hs or a single H surface
faithfully (again, modulo phrasal boundary tones). However, a form with more than one H
tone, as in the compound in (11d), surfaces with a plateau of H-toned TBUs in between the
first and last H—no matter how far apart.

Hyman and Katamba (2010) characterize UTP derivationally as a process which merges
two H tones together. In terms of surface well-formedness, this pattern can be characterized
as the result of a long-distance *HLH (or *TROUGH, in Yip (2002)’s terms) constraint which
bans any two H-toned TBUs separated by any number of L-toned TBUs (Hyman, 2011). The
resulting well-formedness generalization is that forms produced by UTP contain at most one

3 On the surface underlying final H tones are pronounced with a falling tone; thus /kisikı́/ ‘log’ is pro-
nounced [kisikı̂]. However, in order to focus on the long-distance aspects of this pattern, this discussion will
for now abstract away from contours and thus they will not be transcribed. For discussion on how contours
can be straightforwardly incorporated into the proposal, see §6.2.
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plateau of H-toned TBUs. This can be formalized with the set LUTP of strings that satisfy
this constraint are given in (12).

(12) LUTP = { L, H, LL, LH, HL, HH, LLL, LLH, LHL, LHH,
HLL, HHL, HHH, LLLL, LLLH, LLHL, LLHH,
LHLL, LHHL, LHHH, HLLL, HHLL, HHHL, ... }

In other words, LUTP is exactly the set of strings that do not contain any sequence HLnH,
where Ln indicates a sequence of n L-toned TBUs. This is non-local because there is no
scanner window of fixed length that can distinguish between well-and ill-formed strings.
This is illustrated diagrammatically in (13).

(13) a. # L L L L . . . L H #
X LLL. . . L

b. * # H L L L . . . L H #
X LLL. . . L

The well-formed string in (13a) has some arbitrary number of Ls followed by a H.
A fixed scanner window must accept this sequence of Ls, as the string contains a single
H-toned span (of exactly one H) and is thus well-formed. However, our scanner cannot
distinguish this sequence of Ls from the one in the ill-formed string in (13b). The reason for
this is that, because it is checking substrings of some bound length, it cannot ‘remember’
that it has not seen a H to the left in (13a), or that it has seen a H to the left in (13b).
Thus it incorrectly will judge both strings to be well-formed. Importantly, increasing the
length of substrings that the scanner checks does not help—there will always be some pair
of strings like (13a) and (13b) that it cannot distinguish.4 This is an intuitive explanation of
why LUTP is not local; a formal characterization of strictly local formal languages given in
the Appendix allows us to prove that a pattern is not local (Rogers and Pullum, 2011).

Importantly, this means that there is no local learner that can learn the UTP pattern.
This is because it is outside of the hypothesis space of the learner: as a local learner can
only use information it has seen in the fixed space of the scanning window, it can only posit
grammars based on this information. In the specific paradigm considered in this paper, this
means that a local learner can only posit a forbidden substring grammar, such as SKJ in (9)
in the preceding section. Thus, it can never posit a grammar that forbids HLnH for any n.
This is also true for statistically-based local learners: the information they keep track of is
also restricted to some fixed window in the same way. Thus, no matter how sophisticated its
statistics, or how much data it is given, a local learner cannot learn a long-distance pattern
such as UTP.

2.4 Melody constraints

Thus, in order to capture long-distance patterns, a learner must be sensitive to some other
information in input strings. A common approach in phonological learners is to use a func-
tion that projects a tier, eliminating irrelevant information in the string, and then performing
local learning over that tier (Hayes and Wilson, 2008; Heinz et al., 2011; Goldsmith and

4 Recall our assumption that generalizations hold for strings of arbitrary length. Thus, property of locality
is about the phonological pattern itself, independent of generalizations about word length or of constraints on
performance or processing.
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Riggle, 2012). However, as detailed in §5, this is insufficient for learning long-distance tone
patterns. Instead, this paper shows that learning long-distance patterns in tone, as well as
their interactions with local patterns, requires representing local constraints over melodies.

Here, melody is used in its original sense of a string of tonal autosegments (Leben,
1973; Williams, 1976; Goldsmith, 1976). (This is in contrast with other uses of the term
melody, as in strings of consonant or vowel phonemes in non-concatenative morphol-
ogy, i.e. in McCarthy 1985.) For example, the plateauing example from Luganda, (11c)
[mutémá+bı́sı́kı́] ‘log chopper,’would be represented autosegmentally as in (14a), and the
ill-formed *[mutéma+bisikı́] as in (14b).

(14) a. L H

µ µ µ µ µ µ

b. * L H L H

µ µ µ µ µ µ

[mutémá+bı́sı́kı́] *[mutéma+bisikı́]
‘log chopper’ (=11d) (=11e)

We can then posit that in Luganda, ill-formed words contain a HLH sequence in the
melody of their AR. This distinguishes (14a), whose melody is LH, from (14b), whose
melody is *LHLH, which contains the illicit substring HLH. Note that this requires assuming
the OCP—that is, that only a single L can intervene between two Hs on the melody.

The core idea of this paper is to posit local constraints directly over tonal melodies, in-
stead of representing ARs in full. This melody can be extracted with a function operating
on a surface string of TBUs, much in the same way as a tier-projection function operates.
We can define a function mldy(w) that takes a string w of H and L-toned TBUs and re-
places each span (or unbroken sequence) of Hs or Ls with a single H or L, in the order they
appeared. This process is shown step-by-step in (15) for LHHHH (the string of TBUs cor-
responding to (11)d) [mutémá+bı́sı́kı́] ‘log chopper’) and LHLLH (corresponding to (11)e)
*[mutéma+bisikı́]).5

(15) a. mldy(LHHHHH) = L H H H H H
L H

= LH

b. mldy(LHLLLH) = L H L L L H
L H L H

= LHLH

In (15a), the string LHHHHH is composed of a span of a single L-toned TBU followed
by a span of five H-toned TBUs.6 The mldy function collapses these two spans into a string
LH which represents a L span followed by a H span. Similarly, in (15b), the string LHLLLH
is composed of a single L, a single H, a span of three Ls, and a H. Collapsing the span of
three Ls into a single L, the function obtains LHLH. We have now generated exactly the
melody strings from the ARs in (14a) and (14b), respectively.

We then posit a grammar MUTP of forbidden substrings to be interpreted as holding over
these melody strings.

5 This function is defined formally in the Appendix. Interestingly, this function is input strictly local,
a restrictive type of function that has been linked to phonological processes (Chandlee and Heinz, 2018;
Chandlee et al., 2018). Thanks to Jane Chandlee and Jeff Heinz for pointing this out.

6 This function is based on Jardine and Heinz (2015)’s concatenation operation for generating OCP-
obeying ARs from strings. For now, we gloss over the treatment of contours, which can be straightforwardly
dealt with but are not necessary to capture the tone patterns from §3. It will be shown in §6.2 how to adapt
our melody function to incorporate contours.
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(16) MUTP = {HLH}

We use the ‘M’ notation to indicate forbidden substring grammars that operate over
the strings generated by mldy. Given this, MUTP will be violated by any string w of TBUs
for which mldy(w) contains an HLH sequence. Thus, for example, *LHLLLH is not in the
set of strings described by MUTP, because mldy(LHLLLH) = LHLH, which contains the
substring HLH. However, LHHHHH is in the set of strings described by MUTP, because
mldy(LHHHHH) = LH does not include the forbidden substring HLH.

In general, mldy(w) for any string w with two Hs separated by at least one L will in-
clude the forbidden substring HLH, and thus will be excluded by MUTP. Thus, the grammar
MUTP describes exactly the set LUTP from §2.3 representing the long-distance UTP gener-
alization. It has done this by implementing a local constraint against a HLH sequence in
the melody of an AR. This reduction of a long-distance pattern to a local melody constraint
depends on the assumption that, on the surface, in ARs the OCP merges all adjacent, like-
toned TBUs. This and other representational assumptions will be discussed in more detail
in §6.1.

Because the pattern is local when viewed over a melody, it is learnable with the same
scanning procedure outlined in §2.2. This is demonstrated in detail in §4.3. First, however,
the following sections show how these can be combined with local constraints to provide a
learnable model of tonal well-formedness.

2.5 Melody-local grammars

As shown in the preceding section, tone includes both local and long-distance well-
formedness generalizations. Thus, any theory of tonal well-formedness must be able to ac-
count for both. The proposal here is then that tonal well-formedness patterns can be captured
by melody-local grammars that pair a forbidden substring grammar S operating over surface
strings with a melody grammar M operating over the melodies of strings, as in (17).

(17) G = (S,M)

We define L(G), the set described by G, as in (18).

(18) L(G) is the set of all strings w such that
1. w contains none of the substrings in S, and
2. mldy(w) contains none of the substrings in M.

Crucially, (18) is defined conjunctively; a string w satisfies the grammar if and only if it
satisfies both (18a) and (18b).

We can then define a new version of locality, call it melody-local, parallel to the defini-
tion of locality in (8).

(19) A pattern is melody-local iff it is describable by a melody-local grammar.

For example, the Kagoshima Japanese pattern LKJ and the UTP pattern LUTP are both
melody-local, as they can be described with the melody-local grammars below.7

(20) 1. GKJ = (SKJ = {#L#,HH,HLL,HLH,LL#},MKJ = {})
7 These are not the only way these patterns can be described with melody-local grammars; in fact the learn-

ing algorithm proposed in Sect. 4 will learn slightly different, though extensionally equivalent, grammars. For
discussion see §§4.2 and 4.3.
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2. GUTP = (SUTP = {},MUTP = {HLH})

In the melody-local grammar for a purely local patterns like LKJ, M is empty. Likewise,
for purely long-distance patterns with no local constraints, S is empty. Since (18) defines
satisfaction of a melody-local grammar as containing no elements in either S or M, if either
is empty, then it is always vacuously satisfied.

In cases in which both S and M are nonempty, the grammar describes a pattern in which
a local and long-distance generalization interact. However, they can only interact conjunc-
tively; strings must satisfy both the local constraint and the melody constraint. No single
constraint can refer to both melody information and local information at the same time. We
can thus take (19) to be a restrictive hypothesis about tone—that tonal well-formedness pat-
terns must be melody-local. As the following section shows, this prediction is largely borne
out by the kinds of long-distance patterns exhibited in tone.

3 Evidence for melody-locality in tone

This section applies the above-defined notion of melody-locality and shows that a sample
of tonal well-formedness patterns exemplifiying major types of unbounded generalizations
in tone are melody-local. A comprehensive review of tone is difficult, as there is a vast
range of patterns in the literature (Yip, 2002; Hyman, 2011). However, as already noted,
many tone patterns are purely local. Thus, this section will focus on the range of unbounded
patterns that appear in tone, with a particular focus on patterns in which long-distance and
local constraints interact. The following surveys obligatoriness in Chuave (Donohue, 1997),
culminativity in Arigibi (Donohue, 1997) and Prinmi (Ding, 2006), and the blocking of H-
spread in Bemba (Bickmore and Kula, 2013, 2015), and shows that all are melody-local.
Additionally, a marginal case in Karanga Shona (Odden, 1982; Hewitt and Prince, 1989),
which is melody-local save for one exception, is discussed. Regardless, as to be seen in §§4
and 5, these patterns make clear the necessity of considering melody-locality for a learning
model of tone. Finally, as further evidence for melody-locality as a strong characterization of
the structure of tone patterns, this section highlights some logically possible, yet unattested
tone patterns that are not melody-local.

This paper adopts Hyman (2001)’s definition of a tone language as “one in which an
indication of pitch enters into the lexical realization of at least some morphemes” (p. 1368).
This definition includes patterns that are sometimes referred to as “pitch accent” (as in
Kagoshima Japanese) but it is not clear that these patterns should be treated as distinct
from other tone patterns (Hyman, 2009). This also holds for their formal properties: “pitch
accent” systems and uncontroversial tone systems, at least the ones surveyed here (and in
Jardine 2016, 2019), exhibit the same kinds of local and non-local patterns.

Finally, it is common for tone patterns to only apply to a particular domain. The fol-
lowing assumes that domain knowledge is pre-specified: what is the complexity of pattern
L that occurs within a particular domain? Domain information can be included by directly
encoding different types of boundaries in the representation; how this affects learning is a
distinct, if important, learning problem (see Graf, 2017).

3.1 Obligatoriness in Chuave

UTP can be considered what Hyman (2009) calls a culminativity constraint: it forbids the
existence of more than one H plateau in a domain. As Hyman discusses, another kind of
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unbounded pattern in tone is that of obligatoriness, where at least one tone must appear in
a word. One example he gives is Chuave (Chimbu, Papua New Guinea; Donohue, 1997),
in which every word must have at least one H-toned TBU. The relevant TBU is the mora.
Donohue does not explicitly state at which level of the derivation this pattern holds, but one
can infer from his description that it is true on the surface.

(21) Tone in Chuave (Donohue, 1997, p. 355)
a. kán ‘stick’ e. gı́ngódı́ ‘snore’ i. kóiom ‘wing’

H HHH HLL
b. gáán ‘child’ f. dénkábu ‘mosquito’ j. komári ‘before’

HH HHL LHL
c. gáam ‘skim’ g. énugú ‘smoke’ k. koiyóm ‘navel’

HL HLH LLH
d. kubá ‘bamboo’ h. amámó ‘k. o. yam’

LH LHH

Words of the shape *L, *LL, *LLL, etc., are ill-formed in Chuave—in other words, a H
tone is obligatory. The well-formedess condition in Chuave is represented in (22) as the set
LCh of strings with at least one H.

(22) LCh = {H, HL, LH, HH, LLH, LHL, LHH, HLL, HLH, HHH, LLLH, ...}

Like UTP, this is non-local because there is no window of fixed length that can distin-
guish all and only the strings with no H.

However, for any string consisting of exactly one L tone span, the mldy function will
condense it into a single string L: mldy(L) = mldy(LL) = mldy(LLL) = L. We can then
ban all such strings by positing a set MCh = {#L#} consisting of a single substring #L#,
which indicates a L-toned TBU which is both at the beginning and the end of the string. The
Chuave pattern LCh is thus captured by the following melody-local grammar.

(23) GCh = (SCh = {},MCh = {#L#})

Any string that contains an H-toned TBU will not contain #L# in its melody. For exam-
ple, for the well-formed string LLH, mldy(LLH) = LH, which does not contain #L#. How-
ever, for the ill-formed string *LLLL, mldy(LLLL) = L, which does contain #L#. Thus,
MCh captures exactly the set of strings that conform to the Chuave pattern. Note that SCh is
empty and thus always vacuously satisfied.

3.2 Culminativity in Arigibi and Prinmi

Tone patterns also exhibit interactions between local and long-distance constraints. First,
Arigibi (Kiwai; Papua New Guinea Donohue, 1997) has a culminativity constraint: there
can only be one H tone in a word. However, this H tone cannot spread. The relevant TBU
here is the mora. Again, from the description in Donohue (1997) one can infer that the
pattern holds on the surface.
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(24) Arigibi (Donohue, 1997, p. 368)
a. na: ‘finish’ e. umú ‘dog’ h. olaPolá ‘red’

L LH LLLH
b. tutu: ‘long’ f. nı́mo ‘louse’ i. tuniP2́P2 ‘all’

LL HL LLHL
c. vovoPo ‘bird’ g. mudEbÉ ‘claw’ j. idómai ‘eye’

LLL LLH LHLL
d. Elaila ‘hot’ f. ivı́o ‘sun’ k. núP2tama ‘bark’

LLLL LHL HLLL
g. Ngı́PEpu ‘heart’

HLL

The Arigibi pattern is distinguished from an obligatoriness constraint in that H-less
words are allowed (such as (24d) [Elaila] ‘hot’). The set of well-formed TBU strings in
Arigibi is given below in (25) as LAr.

(25) LAr = {H, L, LL, LH, HL, LLL, LLH, LHL, HLL, LLLL, LLLH, LLHL, ...}

Like UTP, this is non-local because we must ban any second occurence of a span of H
tones. However, there is also a local constraint against H spans of two or more moras.

Thus, a melody-local grammar for LAr requires both a local constraint and a constraint
on the melody. Like with UTP, we need to forbid HLH substrings in the melody, to prevent
distinct H spans in the string. Thus, we posit MAr = {HLH}, identical to MUTP. However,
unlike UTP, we have to restrict H spans to only consist of a single TBU. For this, we posit a
local constraint SAr = {HH}. This results in the grammar in (26).

(26) GAr = (SAr = {HH},MAr = {HLH})

Examples of the interaction of these two constraints are given in Table 1. Recall that for
a string to be well-formed with respect to GAr, it has to satisfy SAr, and the melody of that
string has to obey MAr.

w mldy(w) SAr = {HH} MAr = {HLH}

a. *LHHHL LHL 7 X
b. *HLLHL HLHL X 7
c. *HLHH HLH 7 7

Table 1 Ill-formed strings according to GAr. Offending substrings are underlined.

The string in Table 1a, *LHHHL, is ill-formed because it contains the substring HH and
thus does not satisfy SAr. Thus, it is ill-formed regardless of the fact that mldy(LHHHL) =
LHL does satisfy MAr. In contrast, Table 1b, *HLLHL, satisfies SAr because it does not
contain a HH sequence. However, mldy(HLLHL) = HLHL, which does not satisfy MAr,
and so *HLLHL is ill-formed with respect to the grammar. It is also possible to violate both
constraints, as in Table 1c, *HLHH.

Thus, GAr rejects any string with more than one span of Hs, and it rejects any string
for which a span of Hs is more than one TBU long. However, any string with at most one
H-toned mora will satisfy both SAr and MAr; thus, GAr describes exactly LAr. To illustrate,
some examples from LAr are shown in Table 2.
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w mldy(w) SAr = {HH} MAr = {HLH}

a. LLL L X X
b. LLHL LHL X X
c. HLLLL HL X X

Table 2 Well-formed strings according to GAr.

A similar constraint holds in Prinmi (Ding, 2006; Hyman, 2009). In Prinmi, words must
have exactly one span of H tones.8 This span can either be one or two moras long.

(27) Prinmi (Ding, 2006, p. 14)
a. b1́bôobôo ‘roasted flour

HLL with honey’
b. b1́ì́ıôu ‘sunflower stem’

HHL
c. tS’1n

˚
´̃ıdZjẼ ‘dog-nose group’

LHL
d. tõpúk’0́ ‘donkey head’

LHH
e. ô@tS1S´̃o ‘clean liquor’

LLH

f. b1́bôobôoge ‘as for roasted flour
HLLL with honey’

g. b1́ì́ıp3ts1 ‘sunflower’
HHLL

h. tS’1n
˚
´̃ıdZjẼô@ ‘dog-nose ’

LHLL groups’
m. tõpúm3́ìe ‘donkey tail’

LHHL
n. dZjõdZ1m3́ìe ‘buffalo tail’

LLHL

Ding (2006) and Hyman (2009) disagree with respect to the underlying representations
in Prinmi, but they agree on the following generalization of the resulting surface pattern.
All L-toned words are banned as are words with more than one H-tone span. Thus, H is
culminative, as in Arigibi, but also obligatory, as in Chuave. Furthermore, whereas in Arigibi
there is a constraint against H appearing on more than two moras, in Prinmi H can appear
on either one or two moras. The set of possible well-formed words in Prinmi is thus LPr as
shown in (28).

(28) LPr = {H, LH, HH, HL, LLH, LHL, LHH, HHL, HLL, LLLH, LLHL, LLHH, ...}

Thus, like Arigibi and Chuave, LPr is long-distance in that there must be exactly one
H-tone span in the word. Like Arigibi, it is also local in that there is a bound on the length
of this H-tone span, except that in LPr, H-tone spans longer than two are banned.

The local constraint in Prinmi can be modeled with the local grammar SPr in (29).

(29) SPr = {HHH}

SPr contains the single forbidden substring HHH, which forbids a H-tone span from
spreading more than two TBUs.

As H is obligatory in Prinmi, all-L words are also ill-formed. To capture this non-local
constraint, the melody grammar for Prinmi must be MPr = {HLH,#L#}, combining Arigibi’s
constraint against two distinct H spans with Chuave’s constraint against L-toned melodies.
Table 3 gives examples illustrating that strings that are ill-formed with respect to the Prinmi
pattern are correctly rejected by a grammar GPr that combines SPr with this melody con-
straint. This GPr is given in (30).

(30) GPr = (SPr = {HHH},MPr = {HLH,#L#})
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w mldy(w) SPr = {HHH} MPr = {HLH,#L#}

a. *LHHH LH 7 X
b. *HHHH H 7 X
c. *LLLL L X 7
d. *HHLLHH HLH X 7
e. *LHHLLLHH LHLH X 7

Table 3 Ill-formed strings according to GPr. Offending substrings are underlined.

In Table 3a and 3b, *LHHH and *HHHH are correctly rejected by SPr because they
contain the forbidden substring HHH, enforcing the constraint against a H-span that has
spread to more than two TBUs.

The necessity of both a local and a melody constraint is shown in Table 3c through 3e.
First, *LLLL does not run afoul of SPr, but as it contains only L-tones, its melody string is
L, which contains the forbidden melody substring #L# and is thus ruled ungrammatical. The
ill-formed string *HHLLHH satisfies SPr, as both H tone spans are exactly two TBUs long.
However, it violates the melody grammar MPr, because mldy(HHLLHH) = HLH, which
contains the forbidden melody substring HLH. The same goes for Table 3e. Table 4 illus-
trates how strings in LPr satisfy both SPr and MPr.

w mldy(w) SPr = {HHH} MPr = {HLH,#L#}

a. HLLL HL X X
b. LLHH LH X X
c. LLLHHL LHL X X

Table 4 Well-formed strings according to GPr.

In this way, the combined local and melody constraints of GPr work in concert to capture
the generalization that words in Prinmi must have exactly one H-tone span, and that this span
must be at most two TBUs long.

3.3 H-tone spread in Bemba

A striking case of a long-distance constraint interacting with bounded spreading occurs in
Bemba (Bantu, Zambia; Bickmore and Kula, 2013, 2015). In phrase-final position in Be-
mba, the last H spreads unboundedly to the end of the word, while all preceding Hs un-
dergo bounded spread (Bickmore and Kula, 2013, 2015). In Northern Bemba, in which the
bounded spread is binary, this results in a surface pattern in which H spans are maximally
of two TBUs in length, save for the rightmost, which necessarily extends to the end of the
word. (In Copperbelt Bemba, the pattern is identical, except that bounded spread is ternary;
Bickmore and Kula 2013, 2015. A similar pattern also occurs in Cilungu; Bickmore 2007,
p. 8.)

The following data is from Northern Bemba, henceforth “Bemba.” The TBU is the mora.
First, a single H tone extends from its underlying position to the end of the word. The
following data are listed as they are pronounced at the surface.

8 In word-final position, this can technically be realized as a rising or falling tone; contours are abstracted
away from here to focus on the long-distance nature of the pattern. For more on contours, see §6.2.
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(31) Unbounded spreading in Bemba (Bickmore and Kula, 2013, pp. 105, 107)
a. /tu-ka-pat-a/ ‘we will hate’ tu-ka-pat-a LLLL
b. /tu-lée-pat-a/ ‘we are hating’ tu-léé-pát-á LHHHH
c. /bá-ka-fik-a/ ‘they will arrive’ bá-ká-fı́k-á HHHH

In terms of a surface generalization, the rightmost span of H-toned TBUs must extend
to the end of the word. Thus, the surface forms of (31b) [tu-léé-pát-á] ‘we are hating’ and
(31c) [bá-ká-fı́k-á] ‘they will arrive’ are LHHHH and HHHH, respectively; the underlying
strings of TBUs, *LHLLL and *HLLL, are ill-formed.

That only the rightmost span of H-toned TBUs can extend more than two TBUs is shown
in the following data, which each have two underlying H tones.9

(32) Bemba (Bickmore and Kula, 2013, p. 105,108)
a. /béleng-á/ ‘read!’ béléeng-á HHLH
b. /tú-lub-ul-ul-é/ ‘we should explain ’ tú-lúb-ul-ul-é HHLLH
c. /bá-a-pı́t-ile/ ‘they passed’ bá-a-pı́t-ı́lé HLHHH
d. twáá-ku-láa-pá ‘we will be drawing (water)’ twáá-ku-láá-pá HHLHHH

In all of the above examples, the rightmost span of Hs extends to the end of the word,
whereas the preceding span extends to a maximum of two TBUs. Thus, for example, (32b)
[tú-lúb-ul-ul-é] ‘we should explain’ is HHLLH, not *HHHLH. As (32d) [bá-a-pı́t-ı́lé] ‘they
passed’ shows, bounded spreading respects the OCP, such that spans of H tones are separated
by at least one L.

The crucial distinction here is between a string like *HHLLL and HHLLH (=32b): the
former is ill-formed because the rightmost H-tone span does not extend to the right. This is
a long-distance generalization, because a H-tone span must ‘know’ whether or not another
H-tone span occurs to the right. However, it is also a local generalization, because all non-
rightmost H-tone spans must extend to two TBUs (obeying the OCP); thus, *HLLLH and
*HHHLH are also ill-formed.

Considering that all-L forms are also licit (as in (31a) [tu-ka-pat-a] ‘we will hate’ LLLL),
the set of possible strings of TBUs that are well-formed according to the Bemba spreading
generalization is as given as LBe in (33).

(33) LBe is exactly the set that is the union of
1. all strings of all Ls: {L, LL, LLL, LLLL ...}; and
2. all strings containing more than one H span, where the last H span continues to the

end and any preceding H span is maximally of length two:
{ H, HH, HHH, ..., LH, LHH, LHHH, LLHH, LLLH, LHHHH, LLHHH, ...,

HLH, HHLH, HLHH, HHLLH, HHLHH, LHHLH, HHLLHH, HHLLLH, ... }

This pattern is melody-local, as witnessed by the following grammar. First, bounded
spreading is described by the local grammar in (34).

(34) SBe = {#HLL,LHLL,#HL#,LHL#,HHHL}

The first two forbidden substrings in SBe, #HLL and LHLL, capture the constraint that
a H tone not already following a H tone cannot be followed by two L tones. This excludes,
for example, strings like *HLLL and *LHLL. (Because of the OCP, it is possible that it is

9 The second tone in (32a) and (32b) are ‘melody high’ tones assigned to a particular mora by tense, aspect,
and mood morphology. As Bickmore and Kula (2013) explain, these tones behave identically to underlying
tones with respect to the main spreading generalizations.
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followed by a single L just in case another H tone follows, as in the string HLHH.) The next
two forbidden substrings, #HL# and LHL#, capture the same constraint but at the end of
the word; thus *LLHL is ill-formed but LLHH is not. Finally, SBe also forbids the substring
HHHL, which bans HHH sequences that are followed by an L. This following L is specified
because HHH sequences are allowed in LBe, just in case they are in a H span that reaches
the end of the word.

As shown in Table 5, these local constraints force bounded spreading for any H span
that does not reach the end of the word, but allow unbounded spreading if the H span does
reach the end of the word.

w SBe = { #HLL,LHLL,#HL#,
LHL#,HHHL}

a. *HLLH 7
b. *LHLLH 7
c. HHLLH X
d. *HHHHLLL 7
e. LHHH X
f. *HHLLL X

Table 5 Well-formed and ill-formed strings according to SBe. For the ill-formed strings, offending substrings
are underlined.

Table 5a and 5b contrast *HLLH and *LHLLH, in which a non-final H span is not binary,
with HHLLH. The local grammar SBe correctly marks *HLLH as illicit because it contains
#HLL—i.e., the initial H has not spread—and *LHLLH because it contains the substring
LHLL, indicating some word-medial H-span that is not binary. The well-formed HHLLH,
in contrast, contains neither of these substrings. In Table 5d shows a string *HHHHLLL in
which a non-final H has spread more than two TBUs. This is illicit because it contains the
substring HHHL. This is contrasted with Table 5e, LHHH, which has a H that has spread
more than two TBUs but spreads to the end of the word. This does not contain any of the
substrings in SBe, and is thus correctly judged well-formed.

Table 5f, however, is incorrectly judged well-formed by SBe: it has a non-final binary
span of Hs, and so does not contain any of the substrings in SBe. Herein lies the long-
distance nature of the pattern: the local grammar SBe cannot tell whether or not a H span is
the last in the word. In other words, it cannot distinguish between HHLLH and *HHLLL.
Thus, it cannot force unbounded spreading in the latter.

The melody constraint in MBe in (35), however, can force unbounded spreading of the
final H in the word.

(35) MBe = {HL#}

The forbidden melody substring HL# forbids a span of Ls intervening between a H and
the end of the word. In other words, any final H span must spread to the end of the word.
This is illustrated below in Table 6.

Table 6a and 6b show that the strings HHLLH and LHHH are well-formed with respect
to MBe because their melodies, HLH and LH, respectively, do not end in a HL sequence.
In contrast, the melody of the ill-formed *HHLLL does: mldy(HHLLL) = HL. Thus, the
melody constraint MBe forces spreading of the last H to the end of the word. This captures
Bickmore and Kula (2015)’s generalization that a phrase-final TBU wants be associated to
the final H tone in a word, if one exists.
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w mldy(w) MBe = {HL#}

a. HHLLH HLH X
b. LHHH LH X
c. *HHLLL HL 7

Table 6 Well-formed and ill-formed strings according to MBe. For the ill-formed strings, offending substrings
are underlined.

A combined table in Table 7 shows how a grammar GBe (itself given in (36)) correctly
distinguishes strings in LBe from strings not in LBe. Note that the well-formed strings (Table
7a through 7c) satisfy both SBe and MBe, while the ill-formed strings (Table 7d through 7f)
violate at least one.

(36) GBe = (SBe = {#HLL,LHLL,#HL#,LHL#,HHHL},MBe = {HL#})

w mldy(w) SBe = { #HLL,LHLL,#HL#,
LHL#,HHHL}

MBe = {HL#}

a. HHLLH HLH X X
b. LHHH LH X X
c. HHLHHH HLH X X
d. *LHLLH LHL 7 X
e. *HHLLL HL X 7
f. *HHHHLLL HL 7 7

Table 7 Well-formed and ill-formed strings according to GBe. For the ill-formed strings, offending substrings
are underlined.

Thus, through a combination of forbidden substring constraints operating both locally
and over the melody, melody-local grammars can capture the blocking of unbounded H-tone
spread in Bemba.

3.4 Karanga Shona non-assertive verb stems

Finally, one additional pattern that mixes a long-distance dependency with a local one is
tone assignment in Karanga Shona (Bantu, Zimbabwe) verb stems. This pattern is interesting
because it is not entirely melody-local. However, we can posit a melody-local approximation
of the pattern that differs from the pattern in only a single form.

The pattern in question is for the non-assertive verb stems, which Odden (1984) states
“is encountered in numerous morpho-syntactic environments” (p. 259). As in other Bantu
languages, the stem in Shona verbs consists of the root plus extensions and the final vowel
(Myers, 1987, p. 27). Stems can take on one of two patterns; this is usually analyzed as the
result of the root being underlyingly H-toned or L-toned (the latter are sometimes analyzed
as toneless, as in Hewitt and Prince 1989). Examples are given below with the prefixal
complex /handáka/ ‘I didn’t’; the verb stem in each case is the information following the
morpheme boundary.

(37) Karanga Shona non-assertive verb stems (Odden, 1984, p. 258)
H-toned root:
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a. handáka-pá ‘I didn’t give’
b. handáka-tóra ‘I didn’t take’
c. handáka-tóresá ‘I didn’t make take’
d. handáka-tóréserá ‘I didn’t make take for’
e. handáka-tóréséraná ‘I didn’t make take for each other’
f. handáka-tóréséresaná ‘I didn’t make take a lot for each other’
g. handáka-tóréséresesaná (same as f)

L-toned root:
h. handáka-biká ‘I didn’t cook’
i. handáka-bikı́sa ‘I didn’t make cook’
j. handáka-bikı́sı́ra ‘I didn’t make cook for’
k. handáka-bikı́sı́sira ‘I didn’t make cook for each other’
l. handáka-bikı́sı́sirana ‘I didn’t make cook a lot for each other’
m. handáka-bikı́sı́risisana (same as l)

The two surface patterns for Karanga Shona verb stems are schematized as strings of H-
and L-toned TBUs in (38).

(38) Karanga non-assertive verb stems (schematic)
H-toned L-toned
H
HL
HLH
HHLH
HHHLH
HHHLLH
HHHLLLH
...

LH
LHL
LHHL
LHHLL
LHHLLL
LHHLLLL
...

There are multiple derivational interpretations of this pattern. Odden (1984) analyzes it
as the realization of a HHLB melody, where B is a variable that takes on the value of the
root tone, and Hewitt and Prince (1989) analyze it as the ‘edge-in’ (Yip, 1988) mapping of
one or two H tones, depending on the whether or not the root carries a tone, followed by the
application of two bounded spreading rules to the initial H.

However, what is uncontroversial is the resulting surface pattern. Non-assertive verb
stems either (39a) begin with a span of (maximally) three H-toned TBUs, followed by some
number of L-toned TBUs, followed by a final H-toned TBU; or (39b) begin with (maxi-
mally) a LHH sequence of TBUs followed by some number of L-toned TBUs.

(39) a. H-toned roots: {H,HL,HLH,HHLH}∪HHHLmH, m > 0
b. L-toned roots: {L,LH,LHL}∪LHHLn, n > 0

The pattern as a whole is thus the union of the two sets in (39). This pattern must be
identified by a learner in order to recognize that these verb stems belong to the same non-
assertive category.

(40) LKS = {H,HL,HLH,HHLH}∪HHHLmH ∪
{L,LH,LHL}∪LHHLn; m,n > 0

An important generalization here is that if a verb stem ends in a LH sequence, it cannot
start with a LHH sequence (41a). Likewise, if a verb stem begins with a HHH sequence, it
cannot end with a L (41b).
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(41) a. *LHHLH
*LHHLLH
*LHHLLLH

...

b. *HHHL
*HHHLL
*HHHLLL
...

This generalization is long-distance: whether or not the final TBU is H depends on
whether or not the initial TBU is H, no matter how many L tones intervene. However, there
is also a local component, in that the first span of H-toned TBUs can only extend to the third
TBU.

The following shows that the pattern in the Karanga Shona non-assertive tense is largely
melody-local, with the sole exception of two-TBU HL stems. This exception is discussed in
more detail below. The following thus describes a set L′KS that is identical to LKS with the
exception of the single string HL.

First, the constraints on the extent of the two H-toned spans is captured by the following
local grammar SKS.10

(42) SKS = {#LL,#HLL,#HHLL,HHHH,LHLL,LHHH,HH#}

First, the forbidden substring #LL ensures that at least one of the first two TBUs is H, as
shown below by the contrast between Table 8a and the grammatical forms in Table 8d and h.
The forbidden substrings #HLL and #HHLL then ensure that, if the first TBU is H, then the
second and third TBUs must be H as well (given a long enough string). This is illustrated by
the contrast between the ungrammatical forms in Table 8b and c and the grammatical form
in Table 8d below. Furthermore, the forbidden substring HHHH bans stretches of more than
three H-toned TBUs, as illustrated in Table 8e.

w SKS = { #LL,#HLL,#HHLL,
HHHH,LHLL,LHHH,HH#}

a. *LLLLLH 7
b. *HLLLLH 7
c. *HHLLLH 7
d. HHHLLH X
e. *HHHHLH 7

f. *LHLLLL 7
g. *LHHHLL 7
h. LHHLLL X
i. *HHH 7
j. *HHHLHH 7

Table 8 Well-formed and ill-formed strings according to SKS. For the ill-formed strings, offending substrings
are underlined.

For strings that start with LH, the forbidden substrings LHLL and LHHH force the H-
tone span to be exactly two TBUs long (in words of four TBUs or more), as illustrated in
Table 8f, g, and h. Finally, the forbidden substring HH# bans a final stretch of H tones more
than one TBU long, as shown in Table 8i and 8j.

We can then turn to the long-distance generalizations as outlined in (41). In terms of
melodies, this means restricting well-formed melodies in longer forms to HLH and LHL.
The melody grammar in (43) accomplishes this.

10 The boundaries here are not strictly word boundaries; to make this explicit, one could replace these with
appropriate boundaries that demarcate the stem.



22 Adam Jardine

(43) MKS = {#HL#,HLHL,LHLH}

The first forbidden melody substring in (43), #HL#, requires that if a string starts with
a H tone, the following span of L tones cannot be final. As shown in Table 9c and f below,
this bans strings of the form *HHHLn (recall from (41b)). The second constraint, HLHL,
then ensures that words starting with a H tone have an HLH melody, as seen in the contrast
between the well-formed string HHHLLH in Table 9d and the ill-formed string *HHHLLHL
in Table 9d.

w mldy(w) MKS = {#HL#,HLHL,LHLH}

a. HHHLLH HLH X
b. *HHHLL HL 7
c. *HHHLLL HL 7
d. *HHHLLHL HLHL 7

e. LHHLLL LHL X
f. *LHHLLH LHLH 7
g. *LHHLLLH LHLH 7

Table 9 Well-formed and ill-formed strings according to MKS. For the ill-formed strings, offending substrings
are underlined.

The final forbidden melody substring, LHLH, ensures that if a word starts with a LH
sequence, it cannot end on a H. As shown in Table 9f and 9g, this bans strings of the form
*LHHLnH (recall from (41a)).

The melody-local grammar GKS in (44) thus describes the set of strings L′KS in (45).

(44) GKS = ( SKS = {#LL,#HLL,#HHLL,HHHH,LHLL,LHHH,HH#},
MKS = {#HL#,HLHL,LHLH} )

(45) L′KS = {H,HLH,HHLH}∪HHHLmH ∪
{L,LH,LHL}∪LHHLn; m,n > 0

The pattern L′KS is identical to LKS with the exception of a single string, HL. This is
banned by the melody constraint #HL#, but it is attested in Karanga Shona, as in (37b)
[handáka-tóra] ‘I didn’t take’ (stem with attested pattern underlined).

The literature on Shona does not describe any reason to distinguish these HL forms
morphologically from other forms, nor independent evidence to treat them as exceptional.
Thus, they are true cases of undergeneration for the melody-local grammar. There are a few
ways to interpret this. As LKS are L′KS are identical for words of length three and more,
the Karanga Shona pattern is melody-local in a general sense—and thus the long-distance
aspects of the pattern can be learned with a melody-local learner.

More concretely, to deal with the local exception of HL words, we can modify satis-
faction of a melody-local grammar to only check satisfaction of the melody grammar for
words longer than the window examined by the local grammar—in this case, of length 4.
That is, a string like HL, which is exactly of length 4 when the boundaries added, would not
be evaluated for satisfaction of the melody. With this modification, LKS would be described
by GKS exactly. How this modification could be extended to learning is discussed in §4.3.

Alternatively, it may be possible to deal with the single exception of HL forms in
Karanga Shona with weighted constraints (as are briefly discussed in §5.3). Regardless,
while Karanga Shona is not melody-local, a nearly identical pattern is.
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3.5 Unattested long-distance patterns

Finally, while melody-local grammars can capture long-distance generalizations, they can
only capture those which are definable with local constraints over melodies. The melody-
local hypothesis thus makes a meaningful distinction between attested long-distance patterns
and unattested, yet logically possible long-distance patterns.

One example of a logically possible, yet unattested pattern is the midpoint pathology,
generable under some versions of ALIGNMENT constraints (Eisner, 1997; Buckley, 2009;
Hyde, 2012). In the midpoint pathology, a H tone aligns itself to the center of a word.

(46) LMP = {LHL, LLHL, LHLL, LLHLL, LLLHLL, LLHLLL, LLLHLLL,...}

In LMP, words of odd length have a H-toned TBU in the center with equal number of
L-toned TBUs on either side. Thus, for example, the seven-TBU word LLLHLLL is well-
formed with respect to LMP, but *LLHLLLL or *LLLLHLL is not. This is impossible to
capture with a melody-local grammar, as it is impossible to regulate the number of L-toned
TBUs on either side with local constraints. Thus, the melody-local hypothesis correctly
excludes the midpoint pathology in its predicted typology.

Another example is first-last harmony (Lai, 2015). This is a logically possible pattern in
which the first and last TBU in the word must agree in tone, regardless of the values of the
intervening TBUs. This pattern is represented as the set of strings LFL below in (47), which
includes all strings that either both start and end with H, or start and end with L.

(47) LFL = {H, HH, HLH, HHH, HLLH, HLHH, HHLH, HHHH, HLLLH, ...,
L, LL, LLL, LHL, LLLL, LLHL, LHLL, LHHL, LLLLL, ... }

Such a pattern is not attested, at least in major surveys of the literature on tone (Yip,
2002; Hyman, 2011).11 As Lai (2015) argues, the absence of first-last harmony in phonol-
ogy is surprising, given the fact that word-initial and word-final position are perceptually
prominent, and that many phonological generalizations refer to word edges or prominent
positions (see, e.g., Beckman, 1998). This is no less the case for tone (de Lacy, 2002). In
fact, recall that in the Karanga Shona pattern, a word that begins with a H tone must also
end with a H tone. However, as shown in §3.4, this is the result of a fixed HLH melody, and
thus does not allow arbitary intervening strings of tones.

The hypothesis that tone is melody-local thus explains the absence of first-last harmony.
Banning all strings of the shape *H...L (and *L...H) is a long-distance constraint. However,
this constraint cannot be expressed with forbidden substring constraints over a melody, be-
cause the melodies of these strings can be arbitrarily long as well: mldy(HLHL) = HLHL,
mldy(HLHLHL) = HLHLHL, mldy(HLHLHLHL) = HLHLHLHL, ad infinitum. Thus,
there is no finite set of forbidden substrings over the melody that can mark them all ill-
formed.

3.6 Interim summary

Many tonal well-formedness patterns, including local and long-distance generalizations,
share a property of melody-locality. That is, they can be described by the intersection of

11 There are cases, e.g. in Cilungu (Bickmore, 2007, p. 16), in which a morpheme introduces two H tones,
which associate to the beginning and end of the word. However, as both tones are introduced by a morpho-
logical process, this is best characterized as a kind of circumfixation and not phonological agreement. The
applicability of melody-local learning to morphological processes is an interesting question for future work.
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constraints holding either over an autosegmental melody or directly over the string of TBUs.
Table 10 reviews the patterns surveyed in this and the preceding section and the melody-local
grammars that describe them.

Pattern Section(s) Local grammar Melody grammar

Kagoshima Japanese §§2.1,2.2 {#L#,HH,HLL,HLH,LL#} {}
UTP §§2.3,2.4 {} {HLH}
Chuave §3.1 {} {#L#}
Arigibi §3.2 {HH} {HLH}
Prinmi §3.2 {HHH} {HLH,#L#}
Bemba §3.3 {#HLL,LHLL,#HL#, {HL#}

LHL#,HHHL}
Karanga Shona §3.4 {#LL,#HLL,#HHLL,HHHH, {#HL#,HLHL,LHLH}

(≥ 3σ words; L′KS) LHLL,LHHH,HH#}
Karanga Shona §3.4 (not melody-local)

(all words; LKS)
First/last harmony §3.5 (not melody-local)
Midpoint pathology §3.5 (not melody-local)

Table 10 Summary of tone patterns surveyed in §§2 and 3. Patterns falling below the dotted line are unat-
tested.

This section also showed how melody-locality excludes the unattested long-distance
patterns H-tone centering and first-last harmony. Neither can be described through local
constraints over a melody, and so the melody-local hypothesis explains their absence. As
discussed in §3.4, Karanga Shona is an attested pattern that is not melody-local, although
there is a melody-local pattern L′KS that differs from the Karanga Shona pattern in only one
string.

4 Learning melody-local grammars

This shared property of melody-locality makes the surveyed tone patterns efficiently learn-
able. This section demonstrates how this is possible. We first establish the criteria for learn-
ing, and then give an algorithm that can learn any melody-local pattern given a sufficient
sample of positive data.

4.1 The learning framework

The learning criteria adopted here are those of Gold (1967)’s identification in the limit from
positive data, which are roughly as follows. The Gold framework considers learners (learn-
ing algorithms) that take as input a finite set of examples of a pattern (e.g., a finite set of
strings drawn from a target infinite set of strings) and generalize a grammar representing
a (potentially infinite) pattern. A class of patterns is Gold-style learnable if there is some
learner such that, for every pattern in the class, there is some finite sample for which the
learner returns that pattern exactly. In other words, there is a learner that is guaranteed to
learn every pattern in the class, given a sufficient sample of that pattern. Finally, a cogni-
tively plausible learning algorithm computes in a reasonable amount of time. The algorithm
must, then, also be efficient (de la Higuera, 2010). Briefly, this means that the number of
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steps the algorithm takes will be at most polynomially as large as the size of the data it is
given.

L
S A G

Fig. 1 Model of Gold-style learning. A learner A takes as input a finite sample S of pattern L and generalizes
to a grammar G. The learner is successful if, given that S is a sufficient sample, G describes L.

Gold-style learning is an abstraction in some ways. First, the learner must match the
target pattern exactly. However, a learner satisfying the Gold requirement is guaranteed
to learn the pattern given any set of examples that contains a sufficient sample of data.
Furthermore, this guarantee extends to any pattern in the class the learner is designed to
learn. Thus, the learner’s behavior is well-understood—we know how it will behave on a
range of samples and a range of patterns.

Second, the learner is given a ‘perfect’ sample, in that all of its data is representative of
the target pattern, and all aspects of the pattern are represented. Thus, a Gold-style learner
says nothing about how to learn in the face of exceptions. This represents, however, a factor-
ization of the learning problem: we understand first how to learn the class of patterns itself,
and then we can use this knowledge to posit gradient or statistical learners that can learn
these patterns in the face of exceptions. In other words, stochastic learners can use the struc-
ture of categorical learners. For example, Heinz (2010a) defines a categorical precedence-
based learning procedure for long-distance phonotactics (to be discussed in more detail in
Sec. 5), and Heinz and Rogers (2010) show how this can be extended to a stochastic learner
that operates in the same way. Similarly, stochastic maximum entropy learners that consider
learning constraints over tiers (Hayes and Wilson, 2008; Gallagher and Wilson, 2018) use
the same fundamental structure as tier-based strictly local grammars (Heinz et al., 2011).

The following describes a learner for melody-local patterns that satisfies all of the crite-
ria outlined above: given a finite, representative set of examples from a melody-local pattern,
it converges to that exact pattern. It also does this in a linear number of steps with respect to
the size of the data, and is thus very efficient.

4.2 Strictly local learning

The learner posited here is based entirely on the learning of strictly local patterns (Garcı́a
et al., 1990). This proceeds as follows. First, we fix some number k. Given a string, we
can generate its substrings of length k using the same scanning procedure described in §2.2.
That is, we take a window of length k and shift it from left to right through the word.
The following shows that the 3-substrings (substrings for which k = 3) of #LLHL# are
{#LL,#LLH,LHL,HL#}.

(48) # L L H L #
#LL

# L L H L #
LLH

# L L H L #
LHL

# L L H L #
HL#
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More examples are given in Table 11.

String Substrings of length 3

#LLHL# {#LL,LLH,LHL,HL#}
#LHL# {#LH,LHL,HL#}
#LHLL# {#LH,LHL,HLL,LL#}
#LLLH# {#LL,LLL,LLH,LH#}
#LLLLH# {#LL,LLL,LLH,LH#}

Table 11 Examples of 3-substrings for several strings.

This scanning procedure takes linear time in the size of the data—that is, the amount of
time it takes to generate substrings from a set of data is directly proportional to the size of
the data. This is extremely efficient.

Given k, the learning procedure is very simple. First, the learner sets its initial hypothesis
for the grammar to be the set of all possible k-substrings. The size of this set will always
be finite, given a finite set of symbols used to create the substrings. For k = 3 the initial
hypothesis of the learner will be the set below in (49).

(49) Initial hypothesis for S when k = 3
{ #H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,

HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL# }

This means that the learner begins by hypothesizing that all forms are ungrammati-
cal. The learner then takes as input examples of the target pattern, keeping track of the
k-substrings it observes in the input examples. These observed k-substrings are then re-
moved from its hypothesis for the grammar. That is, it considers the observed k-substrings
to now be licit. This process is shown for k = 3 and examples from the penultimate-or-final
H pattern LKJ from Kagoshima Japanese in Table 12.

Table 12 shows the status of the learner after being shown six input strings from the
LKJ pattern (in arbitrary order). At each step (i.e., after each new string from the sample),
the learner updates its hypothesis by removing all of that string’s substrings from its hypoth-
esis. For example, in Step 2, after seeing the string #LLHL#, the learner now treats #LL,
LLH, LHL, and HL# as licit substrings. Note that the learner remembers from step to step
the substrings it has seen from previous steps, so the hypothesized grammar of forbidden
strings either stays the same or grows smaller with each step. Because the learner only sub-
tracts from the hypothesis for the grammar, and never adds to it, means that the learner is
monotonic (Heinz, 2010b). This means that it only considers increasingly general patterns,
and thus avoids the ‘subset problem’ (Angluin, 1980).

By Step 6, the learner has converged to a grammar that is equivalent to SKJ. That is, it has
generalized to a grammar that describes an infinite set of strings. For example, the resulting
grammar in Table 12 accepts the string #LLLLLHL#, even though this was not given in the
input data. This is true for any string in LKJ; thus, the learner has generalized to an infinite
pattern from a finite set of data.

Note that, because the learner is operating under the assumption that k = 3 that it has
converged to a grammar that is intensionally distinct from the grammar SKJ given in (9) in
§2.2. Namely, whereas SKJ included the 2-substring HH, the grammar in Table 12 instead
forbids all 3-substrings that include HH: #HH, LHH, HHL, and HHH. However, again, these
two grammars are extensionally equivalent, in that they describe exactly the same pattern.
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Step String Hypothesis

0.
{

#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
1. #H#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
2. #LLHL#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
3. #LHL#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
4. #LLLH#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
5. #LLLLH#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
6. #HL#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
= {#L#,#HH,HHH,HHL,HLH,HLL,LHH,HH#,LL#}

Table 12 Strictly local learning from a sample of LKJ and where k = 3. Grayed out text indicates forbidden
substrings that have been removed from the hypothesis of the learner at each step.

For a target strictly local pattern describable with forbidden substrings of length k, this
learning method is guaranteed to converge to a grammar representing exactly the target pat-
tern, given examples that show all of the k-substrings in the pattern that are not forbidden
(Garcı́a et al., 1990). Furthermore, as already noted, it is extremely efficient. Importantly,
the learner requires knowing k in advance. This is not an uncommon assumption for phono-
logical learners (Hayes and Wilson, 2008). Also, it is a logical necessity: without knowing
k in advance, strictly local learning is impossible (Rogers and Pullum, 2011; Rogers et al.,
2013). However, we can posit that k for scanning and learning can be seen as coming from
constraints on working memory, e.g. Miller (1956)’s ‘magical number’ of 7±2 objects. All
of the examples here conform to this generalization—a k of at most 4 suffices.

4.3 Melody-local learning

Having established a method for strictly local learning, we can extend it directly to learning
constraints on the melody. To learn a melody-local grammar, which consists of both local
constraints over a surface string and constraints over its melody, the learner learns both
simultaneously. Learning the local constraints proceeds as outlined in the previous section.
Learning the melody constraints proceeds in an almost identical fashion. We fix a length
j for melody learning. This can be distinct from the k for local learning, but to simplify
the exposition we shall assume k = j. The learner then has a hypothesis M for its melody
grammar, and updates this by removing from M all j-substrings it sees in the melody of each
string.Thus, the melody-local learner follows the procedure in (50) at each step.

(50) For each data point w,
1. update hypothesis S using the k-substrings of w, and
2. update hypothesis M using the j-substrings of mldy(w).
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Because we are assuming the OCP, the learner’s initial hypothesis for the melody gram-
mar need not contain adjacent sequences of Ls and Hs. Thus, for example, when j = 3 the
initial state of the hypothesis for the melody grammar is as follows.

(51) Initial hypothesis for M when j = 3
{#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}

To illustrate how this works, let us look at an example involving an interaction between
the local constraints and the constraints on the melody. Recall that in Prinmi, a local con-
straint against a H span spreading more than two moras combined with a constraint that
required exactly one H-tone span per word. Thus, strings like *LHHH are ill-formed, be-
cause a H-tone has spread more than two TBUs, and strings like *LLLL and *LHLLH
are ill-formed, because they do not contain exactly one H-span. Recall this is a non-local
constraint, because it bans any two H-toned TBUs separated by at least one L-toned TBU.
Strings like the set in (52), however, are well-formed.

(52) LHHL, HLL, LLHLL, H, HH, LLLH

The learning procedure outlined in (50) learns a grammar equivalent to the grammar
GPr in (30), given the strings in (52) as data points and k = j = 3. The steps for local learning
are given in Table 13, and the steps for melody learning are given in Table 14.

Step String Hypothesis for local grammar

0.
{

#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
1. #LHHL#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
2. #HLL#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
3. #LLHLL#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
4. #H#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
5. #HH#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
6. #LLLH#

{
#H#,#L#,#HH,#HL,#LL,#LH,HHH,HHL,HLH,
HLL,LHH,LHL,LLH,LLL,HH#,HL#,LH#,LL#

}
= {#L#,HHH,HLH}

Table 13 Learning local grammar for LPr; k = 3.

As k = 3, the local portion of the learner begins with the hypothesis in (49); that is, the
same as for learning LKJ. As the data comes in, it removes the 3-substrings it sees in each
data point from this hypothesis. By Step 6, it has converged to a grammar that only includes
#L#, HHH, and HLH as forbidden substrings, which is correct for LPr. (Note that, while
extensionally equivalent, this grammar is not identical to the grammar SPr given for Prinmi
in (29) in §3.2. How to determine the identical grammar is given below.)

In terms of melody learning, for the same sample of data the learner will correctly con-
verge to the melody grammar MPr for LPr originally given in (30). This is shown in Table 14.
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Step String Melody Hypothesis for melody grammar

0. {#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}

1. #LHHL# #LHL# {#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}

2. #HLL# #HL# {#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}

3. #LLHLL# #LHL# {#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}

4. #H# #H# {#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}

5. #HH# #H# {#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}

6. #LLLH# #LH# {#H#,#L#,#HL,#LH,LHL,HLH,HL#,LH#}
= {#L#,HLH}

Table 14 Strictly local melody learning from the sample of LPr from Table 13; j = 3.

As shown in Table 14, the melodies for the strings in (52) are LHL, HL, H, and LH, from
which the learner will extract all possible melody 3-substrings except for #L# and HLH. Its
hypothesis for the melody grammar thus converges to {#L#,HLH}, which identical to MPr.
Note that the learner is guaranteed to not change this hypothesis. For any example string
from the pattern LPr, its melody will never contain the 3-substrings #L# and HLH. Thus, the
learner will never remove these 3-substrings from its hypothesis.

Thus, the learning procedure outlined in (50) returns the following grammar.

(53) G = ( S = {#L#,HLH,HHH}, M = {#L#,HLH} )

This grammar is equivalent to the grammar GPr in (30) for LPr—all and only the strings
in LPr satisfy the grammar G in (53). Again, this is not identical to GPr: S includes HLH and
#L#, which are the result of the culminativitiy and obligatoriness constraints on H. To obtain
GPr exactly, we can simply apply a minimization procedure in which we remove from S any
substring that also appears in M. Because any such forbidden melody substring in M will
also forbid the same local sequence of TBUs as S, this will not change the pattern described
by the grammar. This minimization procedure will obtain SPr exactly.

We have thus seen how the learning procedure in (50) correctly and efficiently learns a
melody-local pattern given finite samples of data. While this and LKJ in the previous section
were only two examples, we can guarantee that this learning will always happen, given a
sufficient sample of data. A full proof is given in the Appendix, but the basic idea has already
been illustrated in the above examples. If the learner sees all local k-substrings and all j-
substrings in the melody that are not forbidden in the pattern, then it will correctly remove
them from its local and melody hypotheses for the grammar. Conversely, given data points
from the sample pattern, it will never see any k- or j-substrings that are forbidden locally
or in the melody, respectively. It will thus correctly never remove these k- and j-substrings
from its local and melody hypotheses for the grammar. This guarantees that, given samples
exhibiting all allowed k- and j-substrings in the pattern, it will always converge to the correct
grammar.

Finally, how would the learner behave when presented with the data from Karanga
Shona non-assertive pattern, which was shown in §3.4 not to be entirely melody-local? Re-
call that the issue with the Karanga Shona pattern was that, in general, words of the form
HnLm are forbidden, with the single exception of the word HL. Thus, the grammar GKS that
approximated Karanga Shona included #HL# as a forbidden sequence its melody grammar
MKS. However, given data from Shona, the learning procedure outlined above would over-
generalize from a single example HL. Assuming k = j = 4, the learner would, upon seeing
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an input HL, remove #HL# from its hypothesis for the melody grammar. This would thus
return a grammar that incorrectly accepts words of the form HHHLn.

One solution to this problem, based on the discussion in §3.4, is to have the melody
portion of learning only apply to strings of greater than length k (when the boundaries are
included). As discussed in §3.4, the melody grammar is only necessary for capturing long-
distance dependencies. Thus, we can posit a variation of the learner that only modifies its
hypothesis for the melody grammar based on strings greater than length k (that is, the size
the local grammar is sensitive to). This would make an input HL string, which is of length
4 when the boundaries are added, ‘invisible’ to the melody learning procedure. Thus #HL#
would never be removed from the hypothesis for the melody grammar, and the learner would
return a grammar extensionally equivalent to that of GKS.

5 Comparison to other approaches

Previous approaches to long-distance learning in phonology have appealed to either prece-
dence relations (Heinz, 2010a), tier projection (Hayes and Wilson, 2008; Goldsmith and
Riggle, 2012; Jardine and Heinz, 2016; McMullin and Hansson, 2015; Jardine and Mc-
Mullin, 2017), or some combination of both (Graf, 2017). However, neither can learn the
full range of tonal patterns discussed in this paper. The conclusion is thus that, moving for-
ward, either categorical or statistical approaches to learning tone must somehow incorporate
the melody-local structure proposed in this paper.

5.1 Tier-projection and precedence

We focus mainly on tier projection. Tier projection implements a notion of relative locality
by ignoring some subset of units in the surface string (Heinz et al., 2011). For example, we
can capture LAr (the Arigibi pattern in which two H-toned TBUs are banned) using a tier
projection in which L-toned TBUs are ignored. This is depicted in (54).

(54) a. H
↑

L H L L L

b. * H H
↑ ↑

L H L L H

In (54a), the tier projected for the string LHLLL is H, whereas for *LHLLH (which is ill-
formed according to LAr) it is HH. We can thus describe all and only the strings in LAr by a
forbidden substring grammar {HH} that is interpreted as holding over the tier projection that
only includes H-toned TBUs. In terms of formal language theory, such patterns are called
tier-based strictly local (Heinz et al., 2011), and are efficiently learnable even if the tier is not
specified in advance (Jardine and Heinz, 2016; Jardine and McMullin, 2017). Other models
of long-distance phonotactic learning use this basic idea of tier projection, even though it is
usually augmented with feature representations and statistical learning methods (Hayes and
Wilson, 2008; Goldsmith and Riggle, 2012; Gallagher and Wilson, 2018).

However, it can easily be shown that tier projection is not sufficient for the other long-
distance tone patterns discussed in this paper. First, consider the same tier projection for
unbounded tone plateauing pattern, LUTP, in which every string must have at most one span
of H-toned TBUs. The examples below in (55) show the tier projection for a string that is
well-formed with respect to LUTP (55a) and that for a string that is ill-formed (55b).
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(55) a. H H H
↑ ↑ ↑

L H H H L L

b. * H H H
↑ ↑ ↑
H H L L L H

As shown in (55a) and (55b), a string LHHHLL with a single, unbroken stretch of three
H-toned TBUs projects a tier HHH, as does an ill-formed string *HHLLLH with one span
of two H-toned TBUs followed by another, distinct span of a single H-toned TBU. Thus,
tier projection cannot distinguish between a single plateau and multiple, distinct plateaus,
because the intervening L-toned TBUs (or lack thereof) have been ignored.

This same issue occurs in Prinmi, in which words can contain only at most one span of
H-tones. As Prinmi allows spreading of H-tone up to two TBUs, it is possible for there to
be more than one H-toned TBU to appear in the string, as shown below in (56a). Thus, we
cannot ban HH sequences on a projection of H-toned TBUs.

(56) a. H H
↑ ↑

L H H L L

b. * H H
↑ ↑

L H L L H

However, as shown in (56b), ill-formed strings like *LHLLH do contain two Hs on
the tier projection. Thus, a grammar operating over this tier projection cannot distinguish
between (56a) and (56b). As in LUTP, ignoring the L-toned TBUs loses the local information
that distinguishes single spans of TBUs from distinct spans of single H TBUs.

This is also the case for LBe, the long-distance constraint blocking unbounded spread in
Bemba. The examples in (57) compare the tier projections for strings that are well-formed
(57a, b) and ill-formed (57c) with respect to this pattern.

(57) a. H H H
↑ ↑ ↑
H H L L L H

b. H H
↑ ↑

L L L H H

c. *H H
↑ ↑
H H L L L L

Finally, although the Karanga Shona pattern LKS was not melody local, it is not cap-
turable by tier projection either. For example, recall that in LKS strings of the form LHHLn

are well-formed but strings of the form *LHHLnH are not. We can forbid the latter with a
constraint *HHH on a H-TBU tier projection, as shown in (58) below.

(58) a. H H
↑ ↑

L H H L L L

b. * H H H
↑ ↑ ↑

L H H L L H

However, this both allows ill-formed strings of, for example, the form *LnHH, and in-
correctly bans well-formed strings of the form HHHLnH, as shown in (59) below.

(59) a. * H H
↑ ↑

L L L L H H

b. H H H H
↑ ↑ ↑ ↑
H H H L L H

Again, this is due to the fact that tier projections ignore local information: a tier including
only H-toned TBUs fails to distinguish between well-formed H-toned spans at the beginning
of the word versus ill-formed H-toned spans at the end of the word. Thus, the Karanga Shona
pattern is not capturable by tier-projection, and neither is its melody-local approximation,
L′KJ.

To summarize, several of the tone patterns surveyed here are impossible to characterize
with grammars that operate over tier projections. This is because these patterns have both
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a local and long-distance component, and tier projections cannot capture the local compo-
nents. It bears emphasizing that tier projections are not entirely absent from the represen-
tation from tone. The strings of TBUs used throughout this paper are themselves a kind of
tier projection, as they abstract away from segmental information in the string. However, the
above examples show that tier projections are not sufficient for representing tone.

Another proposal for learning long-distance generalizations is precedence-based learn-
ing, a la Heinz (2010a). Briefly, a precedence-based grammar forbids subsequences of the
form x...y, which is interpreted as banning x preceding y anywhere in the string, ignoring
any intervening material. For example, LUTP is describable by a precedence grammar forbid-
ding the subsequence H...L...H (Graf, 2017). Heinz (2010a) and Heinz and Rogers (2013)
show how these grammars are efficiently learnable in a similar way to strictly local gram-
mars. However, obligatoriness constraints like Chuave cannot be captured by precedence
grammars (Rogers et al., 2013). Furthermore, patterns like Prinmi and Bemba, which also
include local generalizations, cannot be captured by precedence grammars, as precedence
grammars are necessarily ‘blind’ to local information (and thus neither can they be captured
by Graf (2017)’s interval-based strictly piecewise grammars, which generalize precedence
and tier projection grammars).

5.2 Learning over autosegmental representations

Finally, Jardine (2017) presents a class of local AR grammars which can capture a range of
local and long-distance constraints and their interactions (Jardine, 2019). These grammars
are based on forbidden subgraphs of ARs, as ARs are graphs (Coleman and Local, 1991). A
subgraph is simply a connected piece of an AR. For example, if we view the Bemba pattern
in terms of ARs, we can model the constraints against bounded and unbounded spreading
with the forbidden AR subgraphs in (60a).12

(60) a.


H L

µ µ µ

, H L #


b. * H L H

µµµ µµµ µµµ µ µ µ µ

, * H L

µ µ µ µ µ µ

c. L H

µ µ µ µ µ µ

, H L H

µ µ µ µ µ µ

The structures in (60a) specify a nonfinal H tone that has spread more than two TBUs
and a melody in which ends in a HL sequence, respectively. As highlighted in bold in (60b),
ARs in which a nonfinal H tone has spread more than two TBUs, or in which a final H tone
has not spread to the end of the word, contain one of these as subgraphs. Thus, the grammar
in (60a) marks them as ill-formed. As shown in (60c), ARs that are well-formed with respect
to the pattern do not contain either subgraph.

Similarly, ARs can also capture the case in Karanga Shona that was problematic for
melody-local grammars (§3.4). Recall that in Karanga Shona, a HL melody was allowed just
in case the H does not spread: HL is a well-formed string, but strings of the form *HHHLn

are not. As discussed in §3.4, a #HL# melody constraint is needed to ban the latter, but also

12 For brevity, this grammar abstracts away from the complete set of constraints that obtain bounded spread-
ing.
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excludes the former. A grammar based on banned AR subgraphs, however, can capture this
behavior by making this melody constraint more specific:

(61) # H L #

µ µ

The constraint in (61) bans multiple association of a H tone when it is part of a HL
melody. This would forbid *HHHLn forms while allowing HL.13

Thus, forbidden subgraph grammars over AR properly include the melody-local prop-
erty: they can capture all of the patterns discussed in this paper. However, learning with
graph grammars is still a poorly understood topic (Eyraud et al., 2012). In the general case,
searching for subgraphs can be computationally taxing. Thus, while ARs are highly struc-
tured (Kornai, 1995; Jardine and Heinz, 2015), they are still more complex than strings, and
so there is no guarantee that there is an efficient way to search them for observed subgraphs.

Finally, as to be discussed in the following section, forbidden subgraph constraints over
ARs appear to be too expressive—that is, they can describe unattested well-formedness
patterns that melody-local grammars cannot. Future work can explore restrictions on AR
grammars that can make them efficiently learnable and restrictive. However, any such re-
striction must be at least able to capture melody-local patterns, in order to capture the tone
patterns discussed here.

5.3 Implications for phonological theory

Previous sections have demonstrated that melody-locality is a necessary property for learn-
ing tone, and this section has shown that tier projection learners do not have this property.
Tier projection learners, whether they are categorical (as in Jardine and Heinz 2016; Jardine
and McMullin 2017) or probabilistic (as in Hayes and Wilson 2008; Goldsmith and Riggle
2012; Gallagher and Wilson 2018; Gouskova and Gallagher pear), are guaranteed to fail
to learn the patterns discussed in this paper, because these patterns simply cannot be rep-
resented by tier projections. The same goes for precedence-based learning (Heinz, 2010a;
Heinz and Rogers, 2010) or interval-based learning (Graf, 2017).

Thus, future models of learning must incorporate the property of melody-locality if they
are to learn tone patterns like the ones surveyed in this paper. Learning directly over ARs
incorporates the melody-local property, but there are unsolved problems with efficiency and
overgeneration.

A consequence of the results in this paper is thus that future work on maximum entropy
models of tone should incorporate a melody-local structure. This will be straightforward.
The analysis of Wargamay in Hayes and Wilson (2008), for example, uses constraints that
operate over distinct projections (Table 18, p. 419). We can thus incorporate melody con-
straints by considering two different ‘projections,’ in the terms of Hayes and Wilson: one
which operates over the string of TBUs and the other which operates over the string gener-
ated by the mldy function. As an example, a schematic for a maximum entropy analysis of
Prinmi is given in Table 15.

One constraint is *HHH, which would be evaluated over each candidate string w, and
one constraint is *HLH, which would be evaluated over mldy(w). Each can be given their

13 A full analysis would also require AR versions of the local spreading constraints in (42), to eliminate
forms of the shape *HLLn. However, this is still describable with AR subgraph grammars; see Jardine (2017).
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Constraint Projection Comment

1 *HHH surface string H-spans cannot be more than three TBUs long
2 *HLH melody No two H-spans in a string

Table 15 Schematic for MaxEnt constraints for Prinmi

own weight, and then violations for these two constraints can be summed in the usual way. A
maximum entropy learner could then learn these weights independently, thus implementing
in a stochastic framework the core melody-local property of melody constraints operating
independently of local constraints. How melody-local learners behave under gradient con-
straint learning is thus an immediately approachable avenue for future research made avail-
able by the current results. One specific open question is whether a melody-local learner
with weighted constraints can learn the full Karanga Shona pattern.

6 Discussion

This paper has represented tone patterns in terms of strings, which raises several represen-
tational questions. This section addresses several of these questions.

6.1 Autosegmental representations and strings

In melody-local grammars, local constraints are represented in terms of strings of H- and
L-toned TBUs. This may seem counter to the long-standing idea that tone should be repre-
sented in terms of ARs (though see Cassimjee and Kisseberth 1998; Shih and Inkelas ming).
However, this is not the case: we can view these string representations as a ‘shorthand’ for
ARs. While human learners may indeed be using AR structures to learn, we can at least
approximate how they are learning with string grammars.

In fact, there is reason to believe that melody-local grammars more accurately capture
the independent behavior of melody constraints and local constraints. As can be seen in the
forbidden subgraph grammar given in (60a) in the previous section, ARs can refer to both
melody information and local associations to TBUs. Thus, these constraints can express
arbitrary combinations of non-local and local information. This appears to be too expressive
for tonal phonotactics.

For example, consider the hypothetical forbidden AR subgraph constraint below.

(62) H L H

µ µ µ µ

The constraint in (62) enforces a ‘no consecutive spreading Hs’ pattern: if a H has
spread, then the preceding or following H cannot also spread. To illustrate, (63) contrasts
ARs that are well-formed with respect to this constraint (631) with an AR that is ill-formed
(632).

(63) 1. H L H

µ µ µ µ µ µ

, H L H

µ µ µ µ µ µ

, H L H

µ µ µ µ µ µ



Melody learning and long-distance phonotactics in tone 35

2. * H L H

µµµ µµµ µ µ µ µµµ µµµ

As shown in (631), given two consecutive H-tone spans, this constraint is satisfied when
at most one span is more than one TBU long. It is violated, then, when both consecutive
H-tone spans are more than one TBU long.

This constraint thus implements a bidirectional “if-then” pattern: if a H tone spreads,
then neither the preceding nor the following can spread. Spreading in tone does not behave
in this way; major reviews of the typology of tonal patterns (Yip, 2002; Hyman, 2011), for
example, do not list any spreading patterns that follow such a rule. Thus, forbidden subgraph
grammars over ARs overgenerate an unattested pattern, through constraints that can simul-
taneously refer to non-local melody information as well as local associations between tones
and TBUs.

In contrast, this pattern is not melody-local. This is because the constraint in (62) si-
multaneously refers to both local and melody information: a HLH melody in which both H
tones have spread. Because melody-local grammars independently represent constraints on
spreading and constraints on the melody, it is impossible to forbid exactly this configuration.
(For a proof that this is not melody-local, see the Appendix.)

Thus, melody-local grammars are more restrictive than local grammars over ARs be-
cause they constrain the interaction between long-distance and local constraints. This re-
striction appears to be the correct one. Again, this is not to say that humans do not use ARs
to represent tonal information in any aspect of the phonological grammar. However, the
melody-local model compares favorably in terms of learning because it is more restrictive
and there is a known method for efficiently learning melody-local grammars.

6.2 Incorporating contours

So far, the discussion in this paper has abstracted away from contour tones. These can also
be captured with melody-local grammars with slight modifications to the mldy function.
For example, the discussion on Prinmi in §3.2 abstracted away from word-final contours (as
noted in Fn. 8). In Prinmi, it is also possible to have a word-final falling- or rising-toned
syllable. Below, falling and rising tones are respectively indicated as [â] and [ǎ] on vowels
and F and R in the schematic representations of strings of TBUs.

(64) Prinmi contours (Ding, 2006)
a. b1̂ ‘honey’ b. tS’̌1 ‘dog’ c. dZjõdŽ1 ‘buffalo’

F R LR

Strictly speaking, in terms of strings these forms violate the generalization posited in
§3.2 for Prinmi that each form must have at least one span of H-toned TBUs. However,
in autosegmental terms, F and R contours are more accurately represented as HL and LH
sequences, respectively, in the melody, as shown in (65) for (64c).

(65) L H

µ µ

dZjõdŽ1 ‘buffalo’ (=64c)
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We can capture this with a melody-local grammar by adding a function cntr that ‘ex-
pands’ contour-toned TBUs in a string (but leaves H and L-toned TBUs as is). This encodes
in our grammars the idea that, when viewed at the melody level, contours are sequences of
level tones (though c.f. unit contours in some East Asian languages; Yip 1995).

(66) cntr(F) = HL, cntr(R) = LH, cntr(LR) = LLH, . . .

We can then posit that mldy operates on the output of cntr.

(67) mldy(cntr(F)) = mldy(HL) = HL
mldy(cntr(R)) = mldy(LH) = LH
mldy(cntr(LR)) = mldy(LLH) = LH

As shown in (67), this obtains the correct autosegmental melody for the contour-toned
forms in Prinmi. Because each of the resulting strings in (67) contain exactly one H, they
then conform to the melody grammar MPr for Prinmi from §3.2. Thus, adapting melody-local
grammars to accomodate contours is straightforward. To what extent the cntr function is
language specific—e.g., to what extent it should be used in East Asian tone languages—is
an interesting open question.

6.3 Other representational issues

As already noted, the mldy function assumes the OCP in generating melody strings. Odden
(1986) argues against the OCP as a hard universal; however, his arguments focus on the
OCP as a constraint on underlying, lexical forms (see also Myers 1987). The only examples
of OCP violation on the surface listed in Odden (1986) are signaled by phonetic downstep.
For example, Odden lists the contrasting ARs in (68) in Kishambaa:

(68) OCP violations in Kishambaa (Odden, 1986)
a. H

nyoka ‘snake’
[nyóká]

b. HH

ngoto ‘sheep’
[ngó!tó]

The first, (68a) ‘snake’ is pronounced with two level H tones, [nyóká], and (68b) ‘sheep’
is pronounced with a H followed by a downstepped H; [ngó!tó].

If surface OCP violations are indicated by downstep, then they can be detected by the
mldy function.14 If downstep marks are included in the inventory of tone symbols, we can
modify the function such that H sequences separated by downstep are output as adjacent,
yet separate H tones in the resulting melody string.

(69) mldy(LHH!HH) = L H H ! H H
L H H

= LHH

Thus, OCP violations that are signaled by downstep can be straightforwardly incor-
porated into the current proposal. Since the ability of melody-local grammars to capture
long-distance processes is based on collapsing each stretch of adjacent like-toned TBUs to

14 Hyman (2011) lists Dioula Odienne (Braconnier, 1982) as a possible example of tautomorphemic OCP
violation not marked by downstep, but he also gives an alternate, OCP-obeying analysis based on underspec-
ification. See also Shih (2016).



Melody learning and long-distance phonotactics in tone 37

a single tone in the melody, the melody-local proposal predicts that surface OCP violations
should block long-distance generalizations. For example, if we imagine a situation in which
OCP violations allow an unbounded number of L tones in between Hs in the melody. In
these situations, the *HLH melody constraint used to capture UTP above would not be able
to ban any two spans of H tones, as they would no longer always be local on the melody tier.

It should be noted that downstep does not universally indicate adjacent HH tone se-
quences. For instance, in Dschang-Bamileke (Tadadjeu, 1974; Hyman, 2011), a surface H!H
sequence of TBUs corresponds to a HLH sequence in the melody. The difference between
Shambaa and Dschang-Bamileke shows that how the mldy function treats downstep must be
language-specific. How a learner may discover this is thus an open question; likely, it de-
pends on alternations (see, e.g., Pulleyblank (1986)’s extensive discussion of downstep and
alternations). However, all such variations on mldy likely fall into the input strictly-local
class of functions (Chandlee, 2014; Chandlee and Heinz, 2018), for which there are known
learning procedures (Chandlee et al., 2014; Jardine et al., 2014). Thus, learning language-
specific mldy functions is an open, yet approachable, question for future work.

There is also the question of underspecified TBUs—i.e., a distinction between ∅ and
L-toned TBUs. This can have an effect on long-distance processes. For example, UTP is
attested in Saramaccan (Roundtree 1972, p. 372; Good 2004, pp. 598–602), but there is a
H/L/∅ distinction in the language, and plateauing only occurs over ∅ TBUs. In terms of the
melody, *H∅H sequences are forbidden but HLH sequences are allowed. Given an inventory
{H,L,∅}, melody-local grammars can describe this pattern, and the melody-local learner
can learn it. One drawback to this particular solution is that it does not quite capture the spirit
of underspecification, in which unspecified TBUs would have no representation at all on the
melody tier.15 This is closer to tier projection, in which certain elements are not represented
at all on the tier in question. A more direct way of incorporating underspecification may
then be to combine melody and tier-projection functions.

Regardless, these methods for incorporating underspecification assume that the distinc-
tion between ∅ and L TBUs is available to the learner. Such representations are likely
determined by alternations. For example, in Saramaccan the distinction between L-toned
TBUs and ∅-toned TBUs is based on whether or not they show a plateauing alternation,
as they are (reported to be) pronounced identically. Thus, as with downstep, learning with
language-specific mldy functions will work in tandem with the learning of alternations (and
input strictly local functions). However, here we have factored out the problem of learning
representations. What has been shown here is that if we have the right representation, then
we are guaranteed to learn the kind of long-distance well-formedness patterns that exist in
tone. Thus, while melody-local grammars do not completely solve the learning problem in
Saramaccan, they are a large step towards solving it.

There remain other aspects of representation that this paper has abstracted away from,
for example the well-documented interaction between tone and metrical structure (de Lacy,
2002; Hyman, 2009). As with the other representational issues discussed in this section, this
is not to deny their place in an ultimate theory of the learning of tone. Rather, the purpose
of this paper has been to focus on the particular issue of learning with melodies, and thus
future work can integrate this solution with other aspects of representation.

15 Thanks to an anonymous reviewer for pointing this out.
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7 Conclusion

Melody-local grammars provide a restrictive, learnable theory of tonal phonotactics based
on the hypothesis that constraints on tone patterns hold either over an autosegmental melody
or over local sequences of adjacent TBUs. This hypothesis was shown to be superior to
conceptions of long-distance interactions based on other representational methods, including
tier projection. Thus, this paper has taken an important step towards solving the learning
problem by identifying a structural property of tonal patterns that can be used to learn them.
This property can form the basis of further work on learning the representation of tone,
learning tonal processes, and the statistical learning of tone.
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Appendix

This appendix collects the formal details of the paper. Standard notation for set theory is
used. Let Σ be a fixed, finite alphabet of symbols and Σ ∗ be the set of all strings over Σ ,
including λ , the empty string. For a symbol σ ∈ Σ , σn denotes the string resulting from n
repetitions of σ . Let |w| indicate the length of a string w. For two strings w,v ∈ Σ ∗, let wv
denote their concatenation (likewise for w∈ Σ ∗ and σ ∈ Σ , wσ denotes their concatenation).
A stringset (or formal language) is a subset of Σ ∗; this corresponds to the notion of pattern
discussed in §2.1. Let o and n represent special boundary symbols not in Σ that represent
the beginning and end of words, respectively; thus, own is the string w delineated with the
boundary strings. (These correspond to the # boundary used in phonology.)

A.1 Strictly local grammars and k-factors

A string u is a k-factor of w if |u| = k and w = v1uv2 for some v1,v2 ∈ Σ ∗; that is, u is a
substring of w of length k. The k-factors of w are given by the following function fack:

fack(w)
def
= {u | u is a k-factor of own} if |own |> k
{own} otherwise

For instance, fac3(LHLL) = {oLH,LHL,HLL,LLn}. We extend fack to stringsets in
the natural way; i.e. for L⊆ Σ ∗, fack(L) =

⋃
w∈L fack(w).

A strictly k-local (SLk) grammar is a set S ⊆ fack(Σ
∗); that is, a subset of all of the

possible k-factors that can appear in strings in S. For example, for Σ = {L,H},

fac2(Σ
∗) = {oH,oL,HH,HL,LH,LL,Hn,Ln}.

Then, for example, Salt = {oH,HH,LL,Ln} is a SL2 grammar because oH, HH, LL, and
Ln are all 2-factors of strings in Σ ∗ (for example, they are all in fac2(HHLL)).

The for a SLk grammar S, the stringset described by S, written L(S), is thus the set of
strings that contain no k-factors in S; that is,

L(S) def
= {w ∈ Σ

∗ | fack(w)∩S = /0}

For example,
L(Salt) = {LH,LHLH,LHLHLH, ...},

that is, the set of strings of alternating Hs and Ls, as this is exactly the set of strings that
contain none of the 2-factors in Salt.

A stringset L is thus strictly k-local iff L = L(S) for some SLk grammar S. We say a
stringset is strictly local if it is strictly k-local for some k.

The learning procedure for the class of strictly k-local stringsets amounts to the function
SLlearnk defined as follows. For a finite set D⊂ Σ ∗,

SLlearnk(D)
def
= fack(Σ

∗)−fack(D)

That is, SLlearnk(D) returns the set of possible k-factors minus the set of k-factors observed
in D. This means that SLlearnk returns a strictly k-local grammar consisting of all of the
k-factors not observed in D. It should be noted that this is a ‘batch’ conception of the learner,
as opposed to the sequential learner presented in the main text. They are equivalent, however.
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The sequential version of the learner takes some finite sequence of data points d1, d2, d3, ...,
dn and returns, at each data point di, SLlearnk({d1,d2,d3, ...,di}).

The following theorem asserts the correctness of SLlearnk.

Theorem 1 For a target strictly k-local stringset L and a sample D of L such that fack(D)=
fack(L), SLlearnk(D) returns a strictly k-local grammar S such that L(S) = L.

Proof We show first that w ∈ L implies w ∈ L(S) and then that w ∈ L(S) implies w ∈ L.
Since fack(D) = fack(L), then fack(Σ

∗)− fack(D) = fack(Σ
∗)− fack(L). Since S =

SLlearnk(D) = fack(Σ
∗)−fack(D), then S = fack(Σ

∗)−fack(L). Thus for every w ∈ L,
fack(w)∩S = /0, so w ∈ L(S).

Because L is a strictly k-local set, there is some strictly k-local grammar S′ such that
L(S′)= L. Note that for any string w that if fack(w)⊆ fack(L), then fack(w)∩S′= /0, and so
fack(w) ∈ L. Because S = fack(Σ

∗)−fack(L). For w ∈ L(S), then fack(w)∩ (fack(Σ
∗)−

fack(L)) = /0 and so fack(w)⊆ fack(L). Thus w ∈ L(S) implies that w ∈ L.

A.2 Melody-local grammars and their learning

Having defined strictly local stringsets and their learning, we can now define melody-local
stringsets.

First, we define the mldy function recursively as follows. For w ∈ Σ ∗,

mldy(w) def
= λ if w = λ ,

mldy(v)σ if w = vσn, v 6= uσ for some u ∈ Σ ∗

That is, mldy(w) returns λ if w = λ , otherwise it returns mldy(v)σ , where v is the longest
string not ending in σ . For example,

mldy(HHLLLH)= mldy(HHLLL)H
= mldy(HH)LH
= mldy(λ )HLH
= λHLH = HLH

For a stringset L⊆ Σ ∗ let mldy(L) = {mldy(w) | w ∈ L}.
A melody strictly k-local grammar M is thus, like a strictly k-local grammar, a subset

of the possible k factors of Σ . That is, M ⊆ fack(Σ
∗). The difference is that we interpret a

melody strictly k-local grammar using the mldy function. The stringset described by M is as
follows:

L(M)
def
= {w ∈ Σ

∗ | fack(mldy(w))∩M = /0}

Thus, for example, if k = 3 and M = {HLH}, then HHLLLH 6∈ L(M), because
mldy(HHLLLH) = HLH and fack(HLH)∩M = {HLH}. However, HLLLL∈ L(M), be-
cause mldy(HLLLL) = HL and fack(HL)∩M = /0.

We can then define a k, j-melody-local grammar G as a tuple G(S,M) where S is a
strictly k-local grammar and M is a melody strictly j-local grammar. The stringset described
by G is thus

L(G)
def
= L(S)∩L(M),

that is, the set of strings that satisfy both S and M. We say a stringset is melody-local if it is
k, j-melody-local for some k and j.
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Learning melody-local stringsets is a straightforward extension of learning strictly local
stringsets. If we fix k, we can define a learning function that takes an input D and outputs
the following result:

MLlearnk, j(D)
def
=
(
SLlearnk(D),SLlearn j(mldy(D))

)
That is, MLlearnk, j(D) returns a tuple, the first of which is obtained by running a strictly
k-local learning on D, the second of which is a melody strictly j-local grammar obtained by
running strictly j-local learning on mldy(D). The following theorem asserts the correctness
of MLlearnk, j.

Theorem 2 For a target k, j-melody-local stringset L and a sample D of L such that
fack(D) = fack(L) and fac j(mldy(D)) = fac j(mldy(L)), MLlearnk, j(D) returns a k, j-
melody-local grammar G such that L(G) = L.

Proof Almost immediate from Thm. 1. If L is k-melody-local, then there is some k-melody-
local grammar G′ = (S′,M′) such that L(G′) = L. Let G = (S,M). Because fack(D) =
fack(L) and fac j(mldy(D)) = fac j(mldy(L)), from Thm. 1 we know that L(S) = L(S′)
and L(M) = L(M′). Thus L(G) = L(G′) = L.

A.3 Abstract Characterization

We can posit an abstract characterization for melody-local patterns independent of a partic-
ular grammar formalism to describe them. This allows us to prove whether or not a pattern
is melody-local. We base this off of the abstract characterization of strictly local stringsets.
Strictly local stringsets can be characterized by the property of suffix substitution closure
(Rogers and Pullum, 2011; Rogers et al., 2013), which can be used to prove that a pattern is
not strictly local.

Theorem 3 (Suffix substitution closure (Rogers and Pullum, 2011)) A stringset L is SLk
iff for any string x of length k−1 and any strings u1, u2, w1, and w2,

if u1xu2 ∈ L and w1xw2 ∈ L, then u1xw2 ∈ L

This means that, for any u1xu2 ∈ L, and for any w1xw2 ∈ L, then, as long as x is of length
k−1, then we can freely replace u2 with w2 and be guaranteed to produce another string in
L. For example, for the stringset LKJ (penultimate or final H tone) from the main text, we
can set x to be HL (because k = 3, x must be of length 2), and u1, u2, w1, and w2 as in (71).

(70) LKJ = {H, HL, LHL, LLHL, LLLHL, ..., LH, LLH, LLLH, ...}

(71) LLLL︸ ︷︷ ︸
u1

LH︸︷︷︸
x

λ︸︷︷︸
u2

∈ LKJ

L︸︷︷︸
w1

LH︸︷︷︸
x

L︸︷︷︸
w2

∈ LKJ

LLLL︸ ︷︷ ︸
u1

LH︸︷︷︸
x

L︸︷︷︸
w2

∈ LKJ X

Thus, u1xu2 is LLLLLH, which is a member of LKJ, and w1xw2 is LLHL, which is also
a member of LKJ. If we substitute u2 for w2 in the former, then we obtain a new string
u1xw2 = LLLLLHL, which is also in LKJ. We can do this for any x of length 2. Another
example is given below in (72) for x = LL.
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(72) LLLL︸ ︷︷ ︸
u1

LL︸︷︷︸
x

HL︸︷︷︸
u2

∈ LKJ

L︸︷︷︸
w1

LL︸︷︷︸
x

LLLHL︸ ︷︷ ︸
w2

∈ LKJ

LLLL︸ ︷︷ ︸
u1

LL︸︷︷︸
x

LLLHL︸ ︷︷ ︸
w2

∈ LKJ X

To show that a stringset is not strictly local, we show that suffix substitution closure fails
for some x no matter the size of k. Recall the stringset LCh (at least one H) from the main
text.

(73) LCh = {H, HL, LH, HH, LLH, LHL, LHH, HLL, HLH, HHH, LLLH, ...}

If, as in LKJ, we set k = 3 and choose the string LL, then LCh fails suffix substitution
closure for x = LL and u1, u2, w1, w2 chosen as shown in (74).

(74) L︸︷︷︸
u1

LL︸︷︷︸
x

H︸︷︷︸
u2

∈ LCh

H︸︷︷︸
w1

LL︸︷︷︸
x

L︸︷︷︸
w2

∈ LCh

L︸︷︷︸
u1

LL︸︷︷︸
x

L︸︷︷︸
w2

6∈ LCh 7

Because u1xw2 = LLLL is not a member of LCh, LCh is not strictly 3-local. Furthermore,
there is no k for which LCh is strictly k-local, because we can simply replace x with Lk−1

(k−1 repetitions of L).

(75) L︸︷︷︸
u1

Lk−1︸︷︷︸
x

H︸︷︷︸
u2

∈ LCh

H︸︷︷︸
w1

Lk−1︸︷︷︸
x

L︸︷︷︸
w2

∈ LCh

L︸︷︷︸
u1

Lk−1︸︷︷︸
x

L︸︷︷︸
w2

6∈ LCh 7

This shows that, no matter what k− 1, suffix substitution in this case will produce a
string LLk−1L, which is not a member of LCh. Thus, LCh fails suffix substitution closure for
any k. This is a formal version of the intuitive ‘scanning’ proof given in §2.3, (13).

From the suffix substitution closure characterization of strictly local stringsets, we
can posit melody-dependent suffix substitution closure as the abstract characterization of
melody-local stringsets.

Theorem 4 (Melody-dependent suffix substitution closure (MSSC)) A stringset L is
melody-local iff, for some k and some j,

1. mldy(L) is strictly j-local and
2. for any strings w1,w2,u1,u2 and for any string x, |x|= k−1,

w1xw2 ∈ L and u1xu2 ∈ L and mldy(w1xu2) ∈ mldy(L) implies w1xu2 ∈ L

Proof Recall that a stringset is melody-local iff it is describable by some melody-local gram-
mar G= (S,M). Thm. 4a follows directly from the definition of L(M). Thm. 4b follows from
suffix substitution closure for L(S) plus the additional requirement that L(G) = L(S)∩L(M).
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Melody-dependent suffix substitution closure adds two conditions on suffix substitution
closure. First, Thm. 4a states that mldy(L) (the stringset consisting of the melodies of all
strings in L) must be strictly j-local. Second, Thm. 4b adds to the antecedent of the suffix
substitution closure implication that mldy(w1xu2) must be in mldy(L). As an example, take
LCh. First, note that mldy(LCh) (given below in (76)), is strictly 3-local, as witnessed by the
melody strictly j-local grammar MCh = {oLn} (i.e., it does not contain the string L).

(76) mldy(LCh) = {H,HL,LH,HLH,LHL,HLHL, . . .}

It is also then true that LCh satisfies Thm. 4 for k = j = 3. While LCh fails the implication
in (74) for suffix substitution closure, this implication holds for melody-dependent suffix
substitution closure, because mldy(LLLL) = L is not a member of mldy(LCh), and so it does
not matter that LLLL 6∈ LCh.

(77) L︸︷︷︸
u1

LL︸︷︷︸
x

H︸︷︷︸
u2

∈ LCh

H︸︷︷︸
w1

LL︸︷︷︸
x

L︸︷︷︸
w2

∈ LCh

mldy( L︸︷︷︸
u1

LL︸︷︷︸
x

L︸︷︷︸
w2

) 6∈ mldy(LCh) X

L︸︷︷︸
u1

LL︸︷︷︸
x

L︸︷︷︸
w2

6∈ LCh

It is thus the case that LCh satisfies melody-dependent suffix substitution closure.
To give an example that does not, recall the ‘no consecutive spreading Hs’ pattern dis-

cussed in §5. More explicitly, this is the set LNo2H as follows.

(78) LNo2H is exactly the set that is the union of
1. The set of all L strings; {L, LL, LLL, LLLL ...}
2. The set of strings containing a single H span (i.e. LUTP):

LUTP = { L, H, LL, LH, HL, HH, LLL, LLH, LHL, LHH,
HLL, HHL, HHH, LLLL, LLLH, LLHL, LLHH,
LHLL, LHHL, LHHH, HLLL, HHLL, HHHL, ... }

3. The set of strings containing more than one H span, where given any two
consecutive H spans, only one can be more than one TBU long:
{HLH, HLLH, HHLH, HLHH, HLLLH, HLHHH, HHHLH, HLLLLH, ... }

That is, LNo2H is exactly the set not containing any strings like *HHLLHH, or
*HHHLHH, or *HHLLLHH, where H spans separated by exactly one L-span are both of
more than one TBU.

There are no constraints on the melody in this pattern; thus mldy(LNo2H) is the full set
of alternating strings of Hs and Ls.

(79) mldy(LNo2H) = {H,L,HL,LH,HLH,LHL,HLHL, . . .}

We can show that this fails melody-dependent substitution closure using example strings
based on the ARs in (63) from the main text.
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(80) HHHH︸ ︷︷ ︸
u1

Lk−1︸︷︷︸
x

H︸︷︷︸
u2

∈ LNo2H

H︸︷︷︸
w1

Lk−1︸︷︷︸
x

HHHH︸ ︷︷ ︸
w2

∈ LNo2H

mldy(HHHH︸ ︷︷ ︸
u1

Lk−1︸︷︷︸
x

HHHH︸ ︷︷ ︸
w2

) ∈ mldy(LNo2H)

HHHH︸ ︷︷ ︸
u1

Lk−1︸︷︷︸
x

HHHH︸ ︷︷ ︸
w2

6∈ LNo2H 7

In this case, u1xw2 =HHHHLk−1HHHH, in which two consecutive H spans have spread
more than two TBUs (as in (632) in the main text). This satisfies the melody constraint
(because, e.g., HHHHLH∈ LNo2H and so HLH∈ mldy(LNo2H)), but it is not in LNo2H, so it
fails the implication, for any k. Thus, ‘the no consecutive spreading Hs’ pattern LNo2H is not
melody-local.
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