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Basic questions

How do children

• acquire language...

• without explicit instruction...

• in such a uniform way...

• despite the variety of experience?
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“[V]arious formal and substantive universals are
intrinsic properties of the language-acquisition system,
these providing a schema that is applied to data and
that determines in a highly restricted way the general
form and, in part, even the substantive features of the
grammar that may emerge upon presentation of
appropriate data.”

(Chomsky, 1965)
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“It made sense for researchers to explore the
possibility of a universal grammar at the time it was
proposed (Chomksy 1965), when an understanding of
the power of statistical learning and induction were a
long way off.”

Goldberg (2009, p. 203)
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Theoretical learning results refute Goldberg’s (and others’) claim:

• Gold (1967): No restrictions on data presentation =⇒ no
general learning algorithm from positive data

• Angluin (1988): “[T]he assumption of stochastically generated
examples does not enlarge the class of learnable sets of
languages.” (p. 2)

• Wolpert and Macready (1997): “[I]f an algorithm performs well
on a certain class of problems then it necessarily pays for
that with degraded performance on the set of all remaining
problems.” (p. 67)
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• A successful (language) learner must assume a restriction...

– ... on the possibilities it is willing to consider; or

– ... on how the data is being presented to it

– (or both!)
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• Computational learning theory is a framework for...

– rigorously studying the logic of learning problems

– ...and solutions!

– developing restrictive, testable hypotheses about
language learning
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This talk:

• Basic results in comp. learning theory, starting from Gold
(1967)

• Criticisms, extensions, alternatives

• Implications for theoretical linguistics, language acquisition

• Illustrations with applications/results in phonology
(but transferable to syntax!)

• Further reading
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• Collaborators/Mentors:

Jeff Heinz Jim Rogers Rémi Eyraud Jane Chandlee Kevin McMullin
(Stony Brook) (Earlham) (Jean Monnet) (Haverford) (Ottowa)

...at Rutgers:

Tatevik Yolyan Wenyue Hua Huteng Dai
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Empirical vs. theoretical
learning models



Empirical vs. theoretical learning models

• Empirical - running models on corpora

• Theoretical - proving conditions under which a learning
algorithm succeeds

(see Niyogi (2006); Heinz et al. (2016); Clark (2017))
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Empirical vs. theoretical learning models

Why theoretical?

• Requires some idealization and assumption

• But, “when [empirical] algorithms do work, we do not know
why they work or what properties of the languages they rely
on...
...[T]he method of mathematical proof will give us the
strongest possible guarantees. Moreover, we will often have a
precise understanding of the properties of the grammars and
languages that allow them to be learned...” (Clark, 2017, p.109)
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What is (language)
learning?



What is (language) learning?

• What is the learning target?

• What is the nature of the input to the learner?

• What are the conditions of success?

11



What is (language) learning?

grammar

language

finite
sample

learner grammar′

language′
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What is a language?

• Grammaticality patterns are formal languages

ex. SVO word order (with C for complementizer)

well-formed: {SV, SVO, SVCSVO, SCSVVO, ...}
ill-formed: {VS, SOV,OSV, SVCSOV, ...}

ex. *CC, *VV

well-formed: {V, CV, CVC, CVCV, CVCVC, ..., }
ill-formed: {CC, CVV, CVCC, ..., CVCVCCVCV, ..., VVVVCVVV, ... }
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What is a grammar?

• A grammar (G) is a finite description of a formal language

I → XY
X → S
X → SCI
Y → V
Y → VO
Y → VCI

*CC, *VV

G for SVO word order G for *CC, *VV language
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What is a grammar?
all possible languages
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What is a grammar?
all possible languages

computable languages

15



What is a learner?
• Learner: a function that takes a finite sample of data and

outputs a grammar

language

finite
sample

learner grammar

language′

• Question: Is there a learner for the computable languages?
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Learning, formally
defined



Identification in the limit from positive data (IILPD)

• Gold (1967): first to formalize learning, in several ways

• Computable languages are not learnable from positive
examples1

1Unless there are restrictions on how the examples are presented.
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Identification in the limit from positive data (IILPD)

• Gold (1967)

– for any target in a class,

– on any infinite presentation of positive examples of that
target,

– learner converges to target exactly after some finite
number of examples
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Identification in the limit from positive data (IILPD)

A presentation of L⋆ is a sequence p of examples drawn from L⋆

L⋆
t p(t)

0 abab

1 ababab

2 ab

3 ab

4 bbab
... ...

In the limit, every string in L∗ appears in p
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Identification in the limit from positive data (IILPD)

A learner A takes a finite initial segment of p and outputs a
grammar

t p(t)

0 abab

1 ababab

2 ab

3 ab
... ...
i ababab

i+ 1 bab

i+ 2 ababab
... ...

p[i] A Gi
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Identification in the limit from positive data (IILPD)

A learner for *XY constraints

• Assume all *XY constraints

• If you see XY in presentation, remove *XY from guess
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Identification in the limit from positive data (IILPD)

L⋆ = the *CC, *VV language

t p(t) hypothesis

0 V C

1 CV CV C

2 CV CV CV

3 V CV CV

...
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Identification in the limit from positive data (IILPD)

L⋆ = the *CC, *VV language

t p(t) hypothesis
{CC,CV, V C, V V }

0 V C

1 CV CV C

2 CV CV CV

3 V CV CV

...
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Identification in the limit from positive data (IILPD)

L⋆ = the *CC, *VV language

t p(t) hypothesis
{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV

2 CV CV CV

3 V CV CV

...
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Identification in the limit from positive data (IILPD)

L⋆ = the *CC, *VV language

t p(t) hypothesis
{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV {CC,CV , V C, V V }

2 CV CV CV

3 V CV CV

...
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Identification in the limit from positive data (IILPD)

L⋆ = the *CC, *VV language

t p(t) hypothesis
{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV {CC,CV , V C, V V }

2 CV CV CV {CC,CV , V C, V V }

3 V CV CV

...
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Identification in the limit from positive data (IILPD)

L⋆ = the *CC, *VV language

t p(t) hypothesis
{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV {CC,CV , V C, V V }

2 CV CV CV {CC,CV , V C, V V }

3 V CV CV {CC,CV , V C, V V }
...
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Identification in the limit from positive data (IILPD)

A different presentation...

L⋆ = the *CC, *VV language

t p(t) hypothesis
{CC,CV, V C, V V }

0 CV CV CV {CC,CV, V C, V V }

1 CV {CC,CV , V C, V V }
...

3 V CV C {CC,CV , V C, V V }
...
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Identification in the limit from positive data (IILPD)

A different language...

L⋆ = the *CC language

t p(t) hypothesis
{CC,CV, V C, V V }

0 V C {CC,CV, V C, V V }

1 CV CV {CC,CV , V C, V V }

2 CV CV CV {CC,CV , V C, V V }
...

57 V CV V CV {CC,CV , V C, V V }
...
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Identification in the limit from positive data (IILPD)

Definition: A class is IILPD-learnable iff there is an algorithm A
such that for any language L in the class, for any presentation p
of that language, A converges to a grammar for L on p at some
finite i.
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Identification in the limit from positive data (IILPD)

• A language is strictly local (SL) iff it is described by a
forbidden substring grammar (McNaughton and Papert, 1971;
Rogers and Pullum, 2011)

• For any fixed length k, SLk is IILDP-learnable
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Identification in the limit from positive data (IILPD)
• Much (all?) of phonology lies in IILPD-learnable classes (Heinz, 2018)

computable languages

SL TSL

phonotactics

– TSL = tier-based strictly local (Heinz et al., 2011; Jardine and Heinz, 2016; McMullin
and Hansson, 2016)

26



Identification in the limit from positive data (IILPD)

Strengths

• An IILPD-provable learner works on any presentation of L

• Works with positive data only

• Identifies target exactly

Abstracts away from...

• gaps or noise
• feasibility (time or data required)
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Identification in the limit from positive data (IILPD)

Gold (1967): The entire computable class is not IILPD-learnable

• Reason: for any finite presentation, there are at least two
computable languages consistent with that presentation

• Most language classes are not IILPD-learnable!

– SL when k is not fixed

– Regular, Context-Free, etc.

28



Identification in the limit from positive data (IILPD)

Gold (1967): The entire computable class is not IILPD-learnable

• Learners must be restricted to some class to be successful
IILPD (Angluin, 1982)

• This fact can be interpreted to give mathematical weight the
poverty of the stimulus argument for UG
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Other paradigms



Other paradigms

• Criticisms of IILPD as a model of human learning:

– requires success on “adversarial” presentations

– no “stochastic learning”

– no considerations of feasibility

– exact convergence is too hard

– absence of noise is too easy
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Other paradigms

IILPD from computable presentations
Gold (1967): The entire class of computable languages is learn-
able in the limit from positive, computable presentations.

• However, the learner is not feasible

• It is an enumerative learner that “guesses” the machine
generating the presentation

• Is experience computable?
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Other paradigms

IIL from positive stochastic distributions

Angluin (1988): If we require learner to identify with p > 2/3, then
IIL from positive stochastic distributions is same as IILPD

• In this paradigm, presentations are drawn from some
stochastic distribution

• Learner must succeed on any distribution

• “[G]iven a presentation on which the normal nonprobabilistic learner
fails, we can construct a corresponding distribution on which the
probabilistic learner will fail.” (Clark and Lappin, 2011, p. 110)
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Other paradigms

IIL from restricted distributions
• Horning (1969): probabilistic context-free grammars can be learned

from positive data with probability 1
• Osherson et al. (1986) extend this to all computable stochastic lan-

guages, given a fixed set of distributions

• Learning target is stochastic formal languages

• Results hold only for a restricted set of fixed distributions

• Distributions are computable (like in Gold 1967!)

• Similarly, learner is not feasible

33



Other paradigms

Summary

• Gold (1967): no general learner for IILPD

• Naively adopting “stochastic learning” does not increase
learning power

• Restricting distributions makes a difference (Horning, 1969;
Osherson et al., 1986)

• So does restricting presentations! (Gold, 1967)

• For more see Heinz (2016)!
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Noise



Noise

• Naturalistic linguistic experience is not perfect

• Noise encapsulates errors and exceptions
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Noise

Noisy presentation
For a language L, a presentation p is a noisy presentation of L iff it is a
positive presentation of L ∪X for some finite set X

IIL from noisy presentations (Osherson et al., 1986)
For a class C to be IIL from noisy presentations, for any L1, L2 ∈ C, both L1−L2

and L2 − L1 must be infinite.
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Noise

IIL from noisy presentations (Osherson et al., 1986)
For a class C to be IIL from noisy presentations, for any L1, L2 ∈ C, both L1−L2

and L2 − L1 must be infinite.

• Even with fixed substring size k, SL is not IIL from noisy
presentations
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Noise
• Dai (submitted)

– SL learner (k = 2) for learning with noise

– Empirical tests on English and Turkish

– Works as well as MaxEnt (Hayes and Wilson, 2008)

• Probabilistic grammars not necessary to deal with noise

• Current work: what kind of presentations does Dai Algorithm work on?

• What kind of presentations are necessary for any algorithm to work?
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Discussion



Discussion

• Computational learning theory investigates the logic of
learning

• Necessarily, it makes idealizations (like IILPD)

• However, it motivates empirical investigations:

– What classes do human language learners target?

– What assumptions do human language learner make
about the data presentation?
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Thank you!

...and also thanks to Huteng Dai, Jeff Heinz, and the Rutgers
Mathematical Linguistics Group
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Reading list (in recommended reading order)

Jonathan Rawski and Jeffrey Heinz. 2019. No Free Lunch in Linguistics or Machine Learning:
Response to Pater. Language , 95(1):e125–e135. (pdf)

Jordan Kodner, Sarah Payne, and Jeffrey Heinz. 2023. Why Linguistics Will Thrive in the 21st
Century: A Reply to Piantadosi. LingBuzz 007485. (pdf)

Heinz, Jeffrey. 2016. Computational Theories of Learning and Developmental Psycholinguistics.
In Jeffrey Lidz, et al., editors, The Oxford Handbook of Developmental Linguistics, chapter 27,
pages 633–663. Oxford University Press. (pdf)

James Rogers and Geoffrey K. Pullum. 2011. Aural Pattern Recognition Experiments and the
Subregular Hierarchy. Journal of Logic, Language, and Information, Vol. 20, No. 3. (pdf)

Clark, Alexander, and Shalom Lappin. 2011. Linguistic Nativism and the Poverty of the Stimulus.
Wiley-Blackwell.

Partha Niyogi. 2006. The Computational Nature of Language Learning and Evolution. MIT Press.
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