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Abstract

This paper studies the learning of two functions given positive samples of their composition,
motivated by an empirical problem in natural language phonology. Empirically relevant
conditions under which this is possible are identified and a provably correct algorithm is
given that can semi-strongly identify the two functions in polynomial time and data. In
order to clearly illustrate the learning problem and related concepts, we focus on a simple
subset of input strictly 2-local functions. But we further argue that the general learning
procedure we propose can be extended to more general classes of functions.

Keywords: subsequential functions, input strictly local functions, identification with poly-
nomial bounds

1. Introduction

Inspired by a fundamental learning problem in natural language phonology, this paper
studies the problem of learning a pair of subsequential functions from positive examples
of their composition. The subsequential functions (Schützenberger, 1977; Mohri, 1997) are
exactly those that have a finite set of tail functions (analagous to the notion of good tails
for regular languages), which can be used to efficiently identify a subsequential function in
the limit from positive data (Oncina et al., 1993). Thus, while it is obviously impossible
to exactly identify any arbitrary two functions from their composition (consider cases in
which the first function entirely obscures the inputs of the second), the structure of the
subsequential class allows us to study more specific cases in which the tail functions of two
subsequential functions can be teased apart from their composition.

In particular, we focus on the case in which the input to a simplex input-strictly 2-
local (simplex ISL2) function is obscured by a second letter-to-string homomorphism. The
simplex ISL2 functions are a novel restriction on the input-strictly local (ISL) functions
(Vaysse, 1986; Chandlee, 2014), which are those in which any change to the input string
is necessarily based on a sequence of symbols of bounded length preceding that change.
Simplex ISL2 functions are ISL2 functions restricted to modifying only one input symbol in
a particular context. While a restricted class, it has the interesting property that the tail
functions of a simplex ISL2 function, while are defined based on the input to the function,
can be determined from the output of the function. We give an algorithm SI2DLA1 that,

1. An implementation in Python along with the data sets in this paper can be found on
https://github.com/rucll/ur learning.
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given positive examples of the composition of a letter-to-string homomorphism f and a
simplex ISL2 function g, can strongly identify g and identify some homomorphism f ′ such
that g ◦ f ′ = g ◦ f , as long as f sufficiently exemplifies the tail functions of g.

While this is a specific case, it is of interest for several reasons. From a theoretical
standpoint, to our knowledge, this is the first work studying the induction of multiple
functions from their composition. In doing so, we identify a technique which can be extended
to other sub-classes of the subsequential functions. As we discuss in §5.2, work on other
classes can proceed by extending any of the many restrictions on the classes discussed here.
Furthermore, it allows for the introduction of an intermediate notion between weak and
strong learning, which we name semi-strong learning.

From an empirical perspective, this result has direct application to natural language
phonology. Generative phonology posits that the phonological content of morphemes—
meaningful pieces of words—are stored with abstract mental representations. When pro-
nounced, these representations are subject to phonological processes that change sounds
based on their context. We can model these two parts of phonology as a homomorphism
from morphemes to their abstract representations, and a function representing phonological
processes from abstract representations to their pronunciations. How words are pronounced
is thus the composition of these two functions. However, children acquiring their language
only have access to data from this composition. A major learning problem in theoretical
phonology, then, is how children learn these abstract representations and processes from
their composition. Thus, as explicated in §5.1, this problem can be identified with the
learning goal explored in this paper.

The paper is organized as follows. Section 2 introduces relevant notations and concepts.
Section 3 establishes the learning problem mathematically and also proves useful properties
of them. Section 4 presents the algorithm, demonstrates how it works, and proves the data
complexity, time complexity and the correctness of the algorithm. Section 5 ends the paper
and discusses directions of future work.

2. Preliminaries

2.1. Strings

Let an alphabet Σ be a finite set of symbols and Σ∗ be all strings over Σ, including the
empty string λ. In this paper, we assume that |Σ| ≥ 3. We denote by |w| the length of
w; note that |λ| = 0. For strings w and v, both wv and w · v denote their concatenation.
Also if w = uv then we write u−1 · w = v and w · v−1 = u. A string u is a prefix of w iff
w = uv for some third string v; likewise u is a suffix of w iff w = vu for some third string v.
For w ∈ Σ∗, let prefs(w) denote the prefixes of w, i.e., {u ∈ Σ∗ | u is a prefix of w}; and
suffs(w) the suffixes of w. The k-prefix of w is prefk(w) = u (respectively suffk(w) = u)
s.t. u is a prefix of w (resp. suffix of w) and |u| = k if |w| > k, otherwise u = w. We also
extend these to sets of strings; e.g. for L ⊆ Σ∗, suffk(L) = ∪w∈L{suffk(w)}. Let w ∧ v
denote the longest common prefix (lcp) of w and v; i.e., a unique u ∈ prefs(w)∩ prefs(v)
s.t. for any other u′ ∈ prefs(w) ∩ prefs(v), |u′| ≤ |u|.
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q1 : λ

w : ab,
x : cbcb,
y : bc,
z : bca

q0 : λ q1 : λ

b : b,
c : c

a : a

b : a,
c : c

a : a

q1,0 : λ q1,1 : λ

w : aa,
x : cbcb,
y : bc

z : bca

w : aa,
x : cbcb,
y : ac

z : aca

T1 T2 T2 ◦ T1

Figure 1: Two onward SFSTs and their (minimized) composition.

2.2. Functions on strings

We consider functions on strings of the form f : Σ∗ → Γ∗ from an input alphabet Σ to a
(potentially distinct) output alphabet Γ. In this paper, we only consider total functions.
Let dom(f) and ran(f) denote the domain and range of f , respectively. For f , let fp(w)

denote the common output of w which is defined as: fp(w)
def
=
∧
wu∈dom(f) f(wu). For any

w ∈ Σ∗, by fw : Σ∗ → Γ∗ we denote the tail function of w, which is defined as fw(u)
def
=

fp(w)−1 ·f(wu). That is, fw(u) returns the contribution of u to the output of f following w.

Finally, based on the definition of fp, define another function fpw(u)
def
=
∧
wu·v∈dom(f)(fw(uv)).

Note this is just the common output of wu minus the common output of w.
Any function f is (left-)subsequential iff the set of unique tail functions—that is, {fw | w ∈

Σ∗}—is finite (Schützenberger, 1977; Mohri, 1997). We often use a bold capital letter, e.g.,
F to denote the set of tail functions of f .

2.3. Subsequential Finite-State Transducers

Subsequential functions can be described by subsequential finite-state transducers (SF-
STs) defined as deterministic FSTs with outputs on the states. An SFST T is a tuple
〈Q, q0, Qn, δ, ω, ι〉 with Qn ⊆ Q being final states, δ : Q × Σ → Q the transition function,
ω : Q× Σ→ Γ∗ the output function, and ι : Qn → Σ∗ the state output function.

To define the function described by an SFST, we extend δ and ω to functions δ∗ and
ω∗ on Q × Σ∗ in the usual way as follows. For w = λ and any state q ∈ Q, δ∗(q, λ) = q;
otherwise δ∗(q, wσ) = r iff δ∗(q, w) = q′ and δ(q′, σ) = r. Similarly, for w = λ and any q ∈ Q,
ω∗(q, λ) = λ; otherwise ω∗(q, wσ) = uv iff δ∗(q, w) = q′, ω∗(q, w) = u, and ω(q′, σ) = v.
Then for an SFST T , the function f(T ) : Σ∗ → Γ∗ is defined as follows: f(w) is defined iff
δ∗(q0, w) ∈ Qn, and if f(w) is defined then f(w) = ω∗(q0, w) · ι(δ∗(q0, w)).

The states in an SFST for f represent tail functions of f , i.e. for each q ∈ Q, fq = fw
for any prefix w that reaches q (i.e., that δ∗(q0, w) = q). Thus, the cardinality of Q must
at least equal the cardinality of F. We say that an SFST for a subsequential function f is
onward iff for any q ∈ Q, σ ∈ Σ, ω(q, σ) = fpq (σ). A canonical SFST T for f is the onward
SFST with a one-to-one correspondence between states in T and tail functions in f .
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Example 1 Two onward SFSTs are given in the standard directed graph representation in
T1, T2 of Fig. 1: T1 describes a letter-to-string homomorphism f = f(T1) from {w, x, y, z}∗
to {a, b, c}∗ in which w, x, y, and z are mapped to ab, cbcb, bc, and bca. Thus, for example,
f(zyw) = bcabcab. The reader can check that for all σ ∈ {w, x, y, z}∗, ω(q1, σ) = fpλ(σ);
Similarly, T2 represents the onward SFST for a function over {a, b, c}∗ that maps any b
immediately following an input a to a. That is, e.g., for g = f(T2), g(bcabcab) = bcaacaa.

We can take the composition of two SFSTs using a construction based on Lothaire
(2005); we give this in full in Appendix A.1.

Example 2 The composition of T2 and T1 is given in the right figure in Fig. 1. Let
h = f(T2 ◦ T1); for example, h(zyw) = bcaacaa = g ◦ f(zyw).

In our figures and examples, we assume the composed SFSTs have also been minimized
(see, e.g., (Sakarovitch, 2009) for minimization techniques). This construction also allows
us to make the following statement about g ◦ f .

Lemma 1 Let f and g be two subsequential functions and h = g ◦ f . Then for the set H
of tail functions of h, |H| ≤ |F×G|.

This lemma follows immediately from the state structure of the construction of Tf ◦ Tg,
where Tf and Tg are the canonical SFSTs for f and g, respectively.

3. Learning paradigm

Informally, the learning problem is about inducing two functions f and g when the input-
output pairs of their composition h are given. Formally, we pose the learning problem
in terms of learning in the limit from positive data (Gold, 1967) in polynomial time and
data (de la Higuera, 2010). The goal is to identify for a class of functions where there
is an algorithm that returns a representation of that function in polynomial time, given
a sufficient positive sample of any function in that class. Further, this sufficient positive
sample must be in polynomial size of the given representation of the function.

We consider a class H of functions that is represented by a class of finite representations
R; that is, there is a total, surjective function N : R → H from representations in R to
functions in H. The notion of a sample and a learning algorithm for it is defined as follows.

Definition 2 (Sample) For some function h ∈ H, a sample D of h is a partial, finite
function that is consistent with h; that is, whenever D(w) = v, h(w) = v. The size of D
is the sum of the size of its composite pairs; that is, |D| =

∑
w∈preim(D) |w|+ |D(w)|, where

preim(D) denotes the pre-image of D .

Definition 3 ((H,R)-learning algorithm) A (H,R)-learning algorithm is a program A
that takes as its input a sample from a function h ∈ H and returns a representation r ∈ R.

In previous work on learning subsequential functions (Oncina et al., 1993; Jardine et al.,

2014; Chandlee et al., 2015), the representations are single SFSTs, and so N(r)
def
= f(r).
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Here, our class R consists of pairs of SFSTs (Tf , Tg), and our mapping N from represen-

tations to target functions is N((Tf , Tg))
def
= f(Tg) ◦ f(Tf ). This adds additional logical

possibilities to the usual notions of weak learning (i.e., learning the target function) and
strong learning (i.e., learning the target representation) (Clark, 2014). The following inter-
mediate notion applies specifically to the problem of decomposing functions.

Definition 4 (Semi-strong characteristic sample) For an R comprised of pairs of sub-
representations, for a (H,R)-learning algorithm A, a sample C is a semi-strong character-
istic sample (CS) of (r1, r2) ∈ R iff for all samples D for N((r1, r2)) s.t. C ⊆ D, A returns
a representation (r′1, r

′
2) s.t. N((r′1, r

′
2)) = N((r1, r2)) and either r′1 = r1 or r′2 = r2.

We can now define the learning goal.

Definition 5 (Semi-strong identification in the limit in polynomial time and data)
The class H is semi-strongly identifiable in polynomial time and data (sSIPTD) iff there
exists an (H,R)-learning algorithm A and two polynomials p and q such that for any semi-
strong characteristic sample S for some r ∈ R, A returns a hypothesis r′ ∈ R in O(p(m))
time and for each r ∈ R of size k, there exists a semi-strong CS of r for A of size at most
O(q(k)).

The class H is sSIPTD indicates that for any function h ∈ H and an (r1, r2) such that
N((r1, r2)) = h (which is not necessarily unique), there is a polynomial-sized semi-strong
CS such that a reasonably accurate representation (r′1, r

′
2) can be computed. Based on N ,

the function h can be inferred by N((r′1, r
′
2)). The algorithm A generates the representation

such that either r′1 = r1 or r′2 = r2. We do not aim at generating a representation that both
r′1 = r1 and r′2 = r2 because such requirement imposes strong restrictions on the class H.

3.1. Simplex Input Strictly Local functions

Clearly we cannot learn g ◦ f for any arbitrary functions f and g. The goal of this paper is
to show that this is possible given a hypothesis space restricted to a class of functions.

3.1.1. Definition

We give such a hypothesis space based on the input strictly local functions (Vaysse, 1986;
Chandlee, 2014). A function g is input strictly k-local (ISLk) iff for any w, v ∈ Σ∗,
suffk−1(w) = suffk−1(v) implies that gw = gv (Chandlee, 2014). A consequence of this
definition is that for an ISLk function g, G = {gw | w ∈ suffk−1(Σ

∗)}.

Example 3 The function g = f(T2) in Fig. 1 is ISL2. For this g, ga(b) = a for the 1-suffix
a, whereas for any other 1-suffix u gu(b) = b. Thus, there are only two distinct tail functions
for g: ga and gu for all other 1-suffixes u.

A useful property of the ISL class is that the canonical SFST for an ISLk function has a
predictable structure: each state represents a set of k − 1 suffixes. This has been used in
past learning algorithms for the ISL class (Chandlee et al., 2014; Jardine et al., 2014), and
will play a role in the algorithm presented here.

In order to highlight the key insights of the algorithm, we simplify the learning problem
by focusing on the following restriction to ISL2 functions.
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Definition 6 (Left-simplex ISL2 function) An ISL2 function g is left-simplex iff it is
properly ISL2 and there is exactly one genv ∈ G and τ ∈ Σ such that gpenv(τ) 6= τ .

We focus on properly ISL2 functions as we are interested in functions with multiple tail
functions (ISL1 functions only have one tail function). Let e be the environment—that is,
the 1-suffix after which the change in g occurs—for g. (That is, ge = genv.) Likewise, we
refer to τ ∈ Σ s.t. genv(τ) = wτ 6= τ as the target of g and wτ ∈ Σ∗ as the output of τ . We
can also refer to by gdef the “default” tail function which maps any symbol to itself.

Example 4 The function g = f(T2) from Fig. 1 is also left-simplex; e = a, τ = b and
wτ = a. That is, ga(b) = a, so ga = genv. Conversely gdef = gλ,b,c = gλ = gb = gc; i.e.,
the tail function representing all other 1-suffixes. That is, gu(σ) = σ for any σ ∈ Σ when
u = λ, b, or c. Note that q0 in T2 corresponds to gdef and q1 corresponds to genv.

3.1.2. Properties of simplex ISL2 functions

As will be seen later on, in order to find g from the composition of g ◦ f , it is necessary
to determine the 1-suffixes in the input that correspond to differing tail functions of g
from the 1-suffixes of the output prefixes for the differing tail functions of g ◦ f . We thus
define a function IS : G → suff1(Σ

∗) that takes a tail function gx of g and maps it
to the input suffixes for gx; that is, the 1-suffixes of the input of all strings whose tail
function is gx: IS(gx) = {s | ∃w s.t. gw = gx and suff1(w) = s}. Similarly, we define a
function OS : G→ suff1(Σ

∗) that maps gx to its output suffixes; that is, the 1-suffixes of
the common outputs of all strings whose tail function is gx: OS(gx) = {s | ∃w s.t. gw =
gx and suff1(g

p(w)) = s}. Note that given a finite alphabet these sets will always be finite.

Example 5 For g = f(T2) from Fig. 1, IS(gdef) = {λ, b, c} and IS(genv) = {a}. However,
OS(gdef) = {λ, a, b, c} 6= IS(gdef) while OS(genv) = {a} = IS(genv).

Let g be a left-simplex ISL2 function. The following lemmas hold for OS(genv). Lemma
8 shows that there are cases in which IS(gx) ( OS(gx). Lemma 9 establishes a key fact for
distinguishing genv from gdef . Proofs for Lemmas 7 to 9 are given in Appendix A.2.

Lemma 7 For gx ∈ G, IS(gx) ⊆ OS(gx).

Lemma 8 For any left-simplex ISL2 function g, |OS(genv)| ≤ 2.

Lemma 9 For any simplex ISL2 function g, |OS(genv)| < |OS(gdef)|.

3.2. Conditions on the two functions and their interaction

There must be conditions on f such that f and g can be discovered given some hypothesis
for g. In particular, we cannot learn g unless its tail functions are detectable from the
strings in the range of f . For the ISL2 class, the below is sufficient. The proofs for the
lemmas in this subsection are presented in Appendix A.3.

Lemma 10 (Distinguishing tail functions in ISL2) For any ISL2 function g and all
tail functions gσ, gϕ ∈ G, gσ 6= gϕ iff there exists some ψ ∈ Σ ∪ {λ} s.t. gσ(ψ) 6= gϕ(ψ).
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Definition 11 (Witnessing ISL2) A homomorphism f : P ∗ → Σ∗ witnesses the ISL2

class iff ∀σ ∈ Σ, ∃ρ ∈ P s.t. suff1(f(ρ)) = σ and ∀σ ∈ Σ, ∃ρ ∈ P s.t. pref1(f(ρ)) = σ.

This is stronger than is strictly necessary for our learning algorithm, but it is simple to
state and generalizes to the entire ISL2 class. We now prove that given an f that witnesses
the ISL2 class, we can distinguish the tail functions of g from g ◦ f .

Lemma 12 Let f be a homomorphism that witnesses the ISL2 class, let g be an ISL2

function, and let h = g ◦ f . h is a ISL2 function and there is a bijection between G and H
such that for every distinct tail function gσ ∈ G, there is a distinct tail function hρ ∈ H
such that for any string w ∈ P ∗ whose tail function is hρ, the tail function of f(w) is gσ.

Thus, if g is a simplex ISL2 function, then h has an environment tail function henv that
corresponds to genv and a default tail function hdef that corresponds to genv. This is why,
for example, T2 and T2 ◦ T1 in Fig. 1 are isomorphic up to transitions.

However, in some cases OS(hx) 6= OS(gx). In Ex. 5, OS(gdef) = {λ, a, b, c} while it is
possible that OS(hdef) = {λ, b, c} when w /∈ dom(h). The mismatch is due to the fact that
gw 6= ggp(w). We say that a string u is opaque iff gu 6= ggp(u), meaning that its input 1-suffix
(and thus its tail function) is not visible from the output. We then amend the notion of
witnessing to ensure that there are non-opaque strings that witness each 1-suffix.

Definition 13 (Surface-witnessing ISL2 function) A homomorphism f : P ∗ → Σ∗

surface-witnesses the ISL2 function g iff there is a sub-function f ′ of f for whom ran(f ′)
includes no opaque strings respect to g and f ′ witnesses the ISL2 class.

Lemma 14 For a homomorphism f that surface-witnesses a simplex ISL2 function g, for
h = g ◦ f it holds that for any gx and hx, OS(hx) ⊆ OS(gx) and IS(gx) ⊆ OS(hx).

Lemma 15 |OS(henv)| < |OS(hdef)|.

4. Algorithm

We now give an algorithm that learns two functions given the a sample of their composition.

4.1. Obtaining the composition transducer

Because both f and g are subsequential, g◦f is subsequential (Schützenberger, 1977). Thus,
g ◦ f is strongly learnable in the limit from positive examples of g ◦ f in cubic time by the
Onward Subsequential Transducer Inference Algorithm (OSTIA) (Oncina et al., 1993). The
starting point of our algorithm is thus to learn the SFST for g ◦ f using OSTIA.

Briefly, OSTIA builds a prefix tree transducer using the input samples of pairs from g◦f ,
and then employs a state merging strategy in which states with identical tail functions (with
respect to the finite sample) are merged. Importantly, given a characteristic sample for g◦f ,
OSTIA returns its canonical SFST.
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4.2. Decomposition of composition transducer

The next step of the algorithm is to decompose this function into these constituent func-
tions. Starting with the composition transducer Tf , decomposition aims to build Tg and
turn Tf into a one-state machine representing a letter-to-string homomorphism. We use the
running example from Fig. 1 to demonstrate the algorithm. The targets are f = f(T1) and
g = f(T2) from Fig. 1. Let D ⊂ g ◦ f be the finite function represented by the set of pairs
{(λ, λ), (w, aa), (x, cbcb), (y, bc), (z, bca), (ww, aaaa), (wx, aacbcb), (wy, aabc), (wz, aabca),
(xw, cbcbaa), (xx, cbcbcbcb), (xy, cbcbbc), (xz, cbcbbca), (yw, bcaa), (yx, bccbcb), (yy, bcbc),
(yz, bcbca), (zw, bcaaa), (zx, bcacbcb), (zy, bcaac), (zz, bcaaca)}. In Alg. 1, OSTIA(D) gen-
erates a two-state composition transducer Tf , shown in Fig. 2, identical to T2 ◦ T1 from
Fig.1. Then the 1-suffixes of strings reaching the two states respectively are collected:
OS(q1), which is {λ, a, b, c}, and OS(q2), which is {a}; these are underlined in Fig. 2.

Algorithm 1 The SI2DLA

Data: A finite function D : P ∗ → Σ∗

1 Tf := OSTIA(D) = 〈Qf = {q1, q2}, q1 = q0f , Qnf = Qf , δf , ωf , ιf 〉
2 Define a mapping OS as follows:

OS(q1) := {λ} ∪ {suff1(ωf (q, ρ)) | δf (q, ρ) = q1}
OS(q2) := {suff1(ωf (q, ρ)) | δf (q, ρ) = q2}

3 Tg, corr, IS := construct Tg(Tf , OS)
4 Tf := modify Tf (Tf , Tg, corr, IS)
5 return (Tf , Tg)

Based on Lemma 12, Alg. 2 initializes Tg with two states qenv and qdef , corresponding to
the environment tail function genv and default tail function gdef , respectively, of g. Alg. 2
then defines corr mapping states in Tg to states in Tf based on the size of the output suffix
sets (based on Lemma 15). In this example, as |OS(q1)| = 4 and |OS(q2)| = 1, corr(qdef) is
set to q2 and corr(qenv) is set to q1. This mapping is marked with dashed lines in Fig. 2.

Lines 3–5 in Alg. 2 then determine IS for each state based on OS. First, IS(qx) is
initialized to OS(qx). If |IS(qenv)| > 1, then there are opaque strings and the environment
e coincides with τ : OS(qenv) = {e, wτ} (see the proof for Lemma 8). Thereby e is the
element in IS(qenv) − IS(qdef). Otherwise IS(qenv) = OS(qenv) which is the case in the
example: IS(qenv) = {a}. If IS(qenv) ∩ IS(qdef) is still non-empty, this indicates that
e = suff1(wτ ) ∈ OS(qdef) as shown in the example (a ∈ OS(q1) and OS(q2)). In order to
obtain the true IS(qdef), this overlapping element is deleted. IS(qenv) and IS(qdef) are now
correctly calculated to be {a} and {λ, b, c}, which corresponds to the input suffix sets for
the function g (see Sec. 3.1.2).

Lines 6–9 of Alg. 2 compute the transition function for Tg. As Tg is ISL2, the transition
from each (q, σ) pair goes to qdef iff σ belongs to IS(qdef), otherwise it goes to qenv. In
this example, δg(qdef , a) = qenv because a ∈ IS(qenv), δg(qdef , b) = qdef because b ∈ IS(qdef),
etc. Lines 12–16 compute the output functions based on the correspondence between the
composition transducer Tf and Tg. For all transitions from qdef , the output is identical to
the input since no change should be expected after default state. For transitions from qenv,
outputs are computed by comparing outputs coming out of corr(qdef) and corr(qenv); call
these wdef and wenv. Since g is ISL2, difference between wdef and wenv can only occur at their
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q1 : λ q2 : λ

w : aa, x : cbcb,
y : bc

z : bca

w : aa,
x : cbcb,
y : ac

z : aca

qdef : λ qenv : λ

b : b,
c : c

a : a

b : a,
c : c

a : a

Tf Tg

Figure 2: The initial state of Tf and its correspondence with Tg.

beginnings, i.e. wdef and wenv share the suffix rest(wdef) defined as first(wdef)
−1 · wdef .

Thereby wenv · rest(wdef)
−1 is the differing prefix between wenv and wdef , which is the

output of change in g. For example, for δg(qenv, b), y is a ρ ∈ P whose output starts with
b. So wdef = ωf (corr(qdef), y) = bc and wenv = ωf (corr(qenv), y) = ac. Thus ωg(qenv, b) =
wenv · rest(wdef)

−1 = ac · c−1 = a.
Algorithm 3 computes Tf . All outgoing transitions from corr(qenv) are removed, as

there are transitions whose output begins with wτ instead of τ (i.e., ω(qenv, y) = ac). The
transitions from corr(qdef) are taken to be the ‘true’ outputs of f and thus become the basis
of Tf . However, opaque strings need special treatment. For example, f(w) = ab is opaque
(gab 6= ggp(ab) = gaa) and so the initial hypothesis for f(w) is incorrectly ωf (q1, w) = aa.
However, Alg. 3 can detect this by checking if the 1-suffix of ωf (q1, w) is not in the input
suffixes of δf (q1, w) = q1 (ln 3). As it isn’t (a 6∈ IS(q1)), it must be the case (because g is
left-simplex, and only one change can occur) that the end of the string is wτ (=a, in this
case), and it should be replaced with τ (b, in this case). Alg. thus 3 replaces a at the end
of aa with b, and so ωf (q1, w) is correctly set to ab. In the end, states are merged for Tf .
The reader can confirm that this correctly produces Tf = T1 and Tg = T2 from Fig. 1.

4.3. Sufficient Sample and Complexity

We now give the time and data complexity of the SI2DLA, starting with the time complexity.

Lemma 16 Given an input D : P ∗ → Σ∗, let n =
∑

(x,y)∈D |x| ,m = max(x,y)∈D |y| , k =

|P | , l = |Σ|. SI2DLA runs in time O(n3(m+ k) + nmk + l).

We now define a sufficient sample for SI2DLA. Since it begins by running OSTIA, we
give its characteristic sample in the Appendix A.4.

Definition 17 (Sufficient sample) For a homomorphism f that surface-witnesses an
ISL2 function g, a finite subfunction H of h = g◦f is a sufficient sample iff P≤2 ⊆ dom(H).

Remark 18 A sufficient sample for SI2DLA is also a CS for OSTIA.

The proofs for Lemma 16 and Remark 18 are presented in Appendix A.4. The lemma
for the complexity of the sample below we give without proof.

Lemma 19 The size of a sufficient sample for a pair of transtucers Tg, Tf is constant.

9
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Algorithm 2 The construct Tg function. Here first(w) returns the first symbol in w;
and rest(w) returns the remainder of w.

Data: An SFST Tf , a mapping OS

1 Qg = {qenv, qdef}
2 Define a bijective mapping corr from Qg to Qf :

corr(qdef) := qi ∈ Qf where OS(qi) is the larger of OS(q1), OS(q2)
corr(qenv) := qj ∈ Qf where OS(qi) is the smaller of OS(q1), OS(q2)

3 Define a mapping IS:
IS(qenv) := OS(corr(qenv))
IS(qdef) := OS(corr(qdef))

4 if |IS(qenv)| > 1 then IS(qenv) := IS(qenv)− (IS(qenv) ∩ IS(qdef)) ;
5 IS(qdef) := IS(qdef)− (IS(qenv) ∩ IS(qdef))
6 for qi ∈ Qg do
7 for σ ∈ Σ do
8 Let qj be the state for which σ ∈ IS(qj)
9 Set δg(qi, σ) = qj

10 end

11 end
12 for (qdef , σ) ∈ dom(δg) do ωg(qdef , σ) := σ ;
13 for (qenv, σ) ∈ dom(δg) do
14 Choose some ρ ∈ P s.t. first(ωf (corr(qdef), ρ)) = σ
15 Let wdef = ωf (corr(qdef), ρ), wenv = ωf (corr(qenv), ρ)
16 ωg(qenv, σ) := wenv · rest(wdef)

−1

17 end
18 q0g := corr−1(q0f )
19 Qng := Qg
20 ιg := ιf
21 return Tg, corr, IS

Algorithm 3 The modify Tf algorithm

Data: SFSTs Tf , Tg, functions corr,IS
1 Delete each (corr(qenv), ρ) from δf , ωf
2 τ := σ such that ωg(qenv, σ) 6= σ
3 wτ := ωg(qenv, σ)
4 for (corr(qdef), ρ) ∈ dom(ωf ) such that suff1(ωf (corr(qdef), ρ)) 6∈

IS(corr−1(δf (corr(qdef), ρ))) do
5 // wτ is a suffix of ωf (corr(qdef), ρ); replace wτ with τ
6 ωf (corr(qdef), ρ) := (ωf (corr(qdef), ρ) · w−1τ ) · τ
7 end
8 Merge the two states in Qf
9 return Tf

10
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4.4. Complexity and correctness proofs

Let f̂ : P ∗ → Σ∗ and ĝ : Σ∗ → Σ∗ be the target functions, with f̂ being a letter-to-string
homomorphism and ĝ a left-simplex ISL2 function, and let ĥ = ĝ ◦ f̂ be their composition.
Let Tf̂ = T (f̂) and Tĝ = T (ĝ). The learning target is then 〈Tf̂ , Tĝ〉. We give sketches of the
proofs here, for the full details see Appendix A.5.

Lemma 20 If f̂ surface-witnesses ĝ, then given a sufficient sample of ĝ◦f̂ , SI2DLA returns
〈Tf , Tg〉 such that Tg = Tĝ.

Proof (sketch) Let 〈Tf , Tg〉 =SI2DLA(D) for a sample D of ĥ containing a sufficient

sample. As ĝ is a simplex ISL2 function, it has two tail functions ĝenv and ĝdef , and as f̂
witnesses the ISL2 class, by Lemma 12, ĥ has exactly two corresponding tail functions ĥenv
and ĥdef . Thus OSTIA(D) = Tf is a two-state machine whose states represent these two

tail functions. Because f̂ surface-witnesses ĝ, and because the sufficient sample contains all
two-symbol combinations of P , when Alg. 1 calculates the output suffixes OS for these two
states, it is equal to the output suffix function OS for the two tail functions of ĥ.

Then, Alg. 2 creates a new SFST with two states, qenv and qdef , and following Lemmas
9 and 15 associates the latter with the state in Tf with the larger set of output suffixes. As

such, it correctly associates qenv with ĥenv—and thus ĝenv—and likewise qdef with ĥdef and
ĝdef . As IS(ĝx) ⊆ OS(ĥx) (Lemma 14), OS discovers the input suffixes IS for qenv and qdef .
To do this, lines 4 and 5 remove any opaque suffixes based on the proof of Lemma 8.

The δg function is predetermined by the structure of ISL2 SFSTs—any transition on σ ∈
Σ goes to the state to which σ is a 1-prefix. The ωg function for qdef is predetermined ĝ being
simplex—all outputs are set equal to their inputs. For qenv, ωg is calculated by comparing

the outputs from the ĥdef and ĥenv states in Tf . As shown in the above explanation, this
correctly sets the target τ to its output wτ and any other σ to itself.

Lemma 21 If f̂ surface-witnesses ĝ, then given a sufficient sample D of ĝ◦ f̂ , SI2DLA re-
turns 〈Tf , Tg〉 such that f(Tg ◦ Tf ) = ĥ = f(Tĝ ◦ Tf̂ ).

Proof (sketch) Essentially, the goal is to produce a homomorphism as close to f̂ as possible
by using the outputs of the transitions of the state in Tf that is associated with ĥdef (i.e.,

corr(qdef)). The outputs from the state associated with ĥenv are discarded, as they represent
changes that are dependent on the tail functions of ĝ. Out of the remaining outputs, there
may be outputs that are the result of an opaque string. Line 6 detects these by finding
mismatches in the 1-suffixes of the outputs with the input 1-suffixes of qdef in Tg. As ĝ is
left-simplex ISL2, this is exactly the case when w = ueτ for some u—i.e. that ĝ(w) = u′wτ
for some u′—and ĝτ 6= ĝwτ . Line 6 thus changes this to u′τ , which is because ĝ is ISL2 with
a tail function ĝτ . Thus, when in the last step the two states of Tf are merged, this creates

an SFST describing a homomorphism such that f(Tg ◦ Tf ) = ĥ = f(Tĝ ◦ Tf̂ ).

We now give the main theorem of the paper.

11
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Theorem 22 For the class of functions h ∈ H described by pairs 〈Tf , Tg〉 ∈ R of transducers
where f(Tg) is a left-simplex ISL2 function and f(Tf ) is a homomorphism that surface
witnesses f(Tg), H is semi-strongly learnable in polynomial time and data by the SI2DLA.

Proof From lemmas 16, 19, 20, and 21.

5. Discussion and conclusion

We now situate this result both in its empirical applications and how it can be generalized
to future theoretical work.

5.1. Empirical motivation

Generative phonology posits that systematic variations in the pronunciations of morphemes
are best explained by mapping an abstract underlying representation (UR) of the phono-
logical content of a morpheme to one or more concrete surface representations (SRs) using
a phonological grammar (Chomsky and Halle, 1968). For example, the pronunciation of the
English past tense suffix varies depending on its phonological context. In ‘wagged’ it is pro-
nounced as a voiced [d] (brackets [ ] indicating an SR), whereas in ‘napped’ it is pronounced
as a voiceless [t]. An analysis based on the principles of generative phonology posits that
the morpheme past in English has a single abstract underlying representation /d/ (slashes
/ / indicating a UR) that is mapped by the phonology to [t] after voiceless sounds (like the
/p/ in ‘napped’) and [d] elsewhere (e.g., the /g/ in ‘wagged’, which is voiced).

We can thus model the URs of morphemes with a homomorphism f : f(wag) = wæg,
f(nap) = næp, f(nap+past) = næpd, etc., and the phonology of English as an ISL2

function g that changes /d/ to [t] following voiced sounds: g(wægd) = wægd and g(næpd) =
næpt. The surface pronunciation of the past tense of ‘nap’ is thus g(f(nap+past)) = næpt.

A major learning problem in phonological theory is how children acquire both of these
functions. URs, being abstract mental representations, are not directly present in the
child’s linguistic input. They must then be inferred, along with the phonology function,
from the surface pronunciations of words—in other words, from the composition of the
two functions. That is, the child learner must somehow infer that, because wag+past is
pronounced [wægd] and nap+past is pronounced [næpt], that the UR of past is /d/ and
the phonology function that maps /d/ to [t] after voiceless sounds.

A toy example in Fig. 3 illustrates how this problem maps onto the decomposition
problem solved by the SI2DLA. Fig. 3 gives a morphology-to-UR function mapping a
morpheme 1 to tat, 2 to ada, and 3 to d (Tf ), a phonology function mapping d to t after
a t (Tg), and a composition machine that shows how sequences of morphemes are mapped
to their SRs (Tg ◦ Tf ). Note that g is simplex ISL2 and that f surface-witnesses g, the two
can be learned from a sample of their composition by the SI2DLA.

This is a simplification: phonological processes target groups of sounds instead of single
sounds. However, there are many ways in which this captures basic concepts of the problem.
First, Chandlee (2014) showed that 94% of the processes in the P-Base database (Mielke,
2004) are ISLk for some k, with the k = 2 for a great number of them. While phonological
processes target more than one sound, usually (but not always) target a single natural

12
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q1 : λ

1 : tat,
2 : ada,
3 : d

q0 : λ q1 : λ

a : a,
d : d

t : t

d : t,
a : a

t : t

q1,0 : λ q1,1 : λ

2 : ada,
3 : d

1 : tat

2 : ada,
3 : t

1 : tat

Tf Tg Tg ◦ Tf

Figure 3: A toy phonological example.

class of sounds (Chomsky and Halle, 1968), and so are simplex given the right kind of
representation. Thus, this is a limited example, but we expect future work to build on this
result to increase its empirical coverage. We turn to these possibilites now.

5.2. Future work

The core insight of the current result is determining the tail functions of the second function
g from its output strings. The fact that the first function f had a single tail function—
and thus this did not factor into the learning problem—can also be adjusted to study the
interaction of the tail functions of two different functions. However, the most immediate
way to generalize the present result is to also capture right-simplex ISL2 functions, which
can be defined as the reversal of a left-simplex function (analagous to the right-subsequential
functions). Both the left and right-simplex ISL2 functions can be learned with the same
procedure, but we have omitted this for concerns of length of the paper.

Similarly, extending this result to simplex ISLk functions for k in general is straightfor-
ward, with more details to deal with multiple tail functions and cases of opacity. However,
interestingly, in this case there will be k− 2 ‘default’ tail functions, each keeping track of a
prefix of the ‘environment’ k−1 suffix. This will likely not complicate the learning problem,
however, as the algorithm still can focus on finding the single ‘environment’ tail function.

Finally, a prime target for future work is the output-strictly local functions (Chandlee
et al., 2015), whose tail functions are defined based on their output and are also empiri-
cally relevant to phonology (Chandlee, 2014). Thus, this specific result opens the door to
studying the general problem of simultaneous learning of multiple functions for sub-classes
of subsequential functions.
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Appendix

A.1. Composition of Subsequential Functions

To represent the composition of subsequential functions, we adapt the composition of
two SFSTs by Lothaire (2005). For two SFSTs T ′ = 〈Q′, q′0, Q′n, δ′, ω′, ι′〉 and T ′′ =

〈Q′′, q′′0 , Q′′n, δ′′, ω′′, ι′′〉, T ′′ ◦ T ′
def
= 〈Q′ ×Q′′, (q′0, q′′0), Q′n ×Q′′n, δ, ω, ι〉 where

ω((q′, q′′), σ)
def
= w, δ((q′, q′′), σ)

def
= (r′, r′′), ι((q′n, q

′′
n))

def
= ω′′∗(q′′n, ι

′(q′n))
where ω′(q′, σ) = v, ω′′∗(q′′, v) = w for some v ∈ Σ∗, δ′(q′, σ) = r′ and δ′′∗(q′′, v) = r′′

A.2. Proofs from Section 3.1

Lemma 7 For gx ∈ G, IS(gx) ⊆ OS(gx)

Proof Since gdef(σ) = σ for every σ ∈ Σ, for some arbitrary s ∈ IS(gx), by taking some
u ∈ Σ∗ and d ∈ IS(gdef), we can ensure that gpud(s) = s. Thus by choosing uds as w from
the definition of OS, we can ensure that s = suff1(g

p(w)) and thus that s ∈ OS(gx).

The following lemma essentially shows that there are cases in which IS(gx) ( OS(gx).

Lemma 8 For any left-simplex ISL2 function g, |OS(genv)| ≤ 2.

Proof First, by definition of left-simplex ISL2, |IS(genv)| = |{e}| = 1, so |OS(genv)| ≥ 1.
However, in the case that e = τ and suff1(wτ ) 6= τ , then there can be strings of the form
uττ whose input 1-suffix is τ = e but whose output 1-suffix is suff1(wτ ). To give an
example, let g be a left-simplex ISL2 function such that gpa(a) = b. Then OS(genv) = {a, b}
because when w = a, gpw(a) = b where a = suff1(g(w)) = suff1(g(a)) = suff1(a); when
w = aa, gpw(a) = b where b = suff1(g(w)) = suff1(g(aa)) = suff1(ab).

However, as g is left-simplex, gτ (τ) = wτ is the only change that can be present, so at
most OS(genv) = {e, suff1(wτ )}, whose cardinality is 2.

Lemma 9 For any simplex ISL2 function g, |OS(genv)| < |OS(gdef)|.

Proof As we assume |Σ| ≥ 3 (see §2.1), |suff1(Σ∗)| = |{λ} ∪ Σ| = 1 + |Σ| ≥ 4. As g is
simplex and thus there are only two tail functions, |IS(gdef)| = |suff1(Σ∗)| − |IS(genv)| =
|suff1(Σ∗)|−1 ≥ 3. Then by Lemma 7, |OS(gdef)| ≥ 3, and as by Lemma 8, |OS(genv)| ≤ 2,
then the inequality |OS(gdef)| > |OS(genv)| always holds.

A.3. Proofs from Section 3.2

Lemma 10 (Distinguishing tail functions in ISL2) For any ISL2 function g, for all
tail funtions gσ, gϕ ∈ G, if gσ 6= gϕ there exists some ψ ∈ Σ∪{λ} such that gσ(ψ) 6= gϕ(ψ).

Proof By contradiction. Say that gσ 6= gϕ but gσ(λ) = gϕ(λ) and for all ψ ∈ Σ, gσ(ψ) =
gϕ(ψ). So there must be some ψ and u such that gσ(ψu) 6= gϕ(ψu); in other words, then
gσψ(u) 6= gϕψ(u). But because g is ISL2, then gσψ(u) = gψ(u) = gϕψ(u); contradiction.
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Lemma 12 Let f be a homomorphism that witnesses the ISL2 class, let g be an ISL2

function, and let h = g ◦ f be their composition. Then h is a ISL2 function and there is
a bijection between G and H such that for every distinct tail function gσ ∈ G, there is a
distinct tail function hρ ∈ H such that for any string w ∈ P ∗ whose tail function is hρ, the
tail function of f(w) is gσ.

Proof As per Lemma 10, if two tail functions gσ, gϕ ∈ G are distinct then there is some
third ϕ ∈ Σ such that gσ(ψ) 6= gϕ(ψ). As per Def. 11, if f witnesses the ISL2 class then
there are ρ1, ρ2 ∈ P such that their 1-suffixes under f are σ and ψ, respectively, and there is
a ρ3 whose 1-prefix is ψ. Thus for some w ∈ Σ∗, gf(ρ1)(f(ρ3)) = gσ(ψw) 6= gf(ρ2)(f(ρ3)) =
gϕ(ψw), and so hρ1(ρ3) 6= hρ2(ρ3). So gσ corresponds to a distinct tail function hρ1 and gϕ
corresponds to a distinct tail function hρ2 .

Furthermore, as f is a homomorphism, |F| = 1 and thus |F ×G| = |G|, so by Lemma
1, |H| ≤ |G|. Thus, there can be no other distinct tail functions in H beyond those that
correspond to tail functions in G.

Lemma 14 For a homomorphism f that surface-witnesses a simplex ISL2 function g, for
their composition h = g ◦ f it holds that for any tail function 1) OS(hx) ⊆ OS(gx); and 2)
IS(gx) ⊆ OS(hx)

Proof As f witnesses the ISL2 class, its range includes strings in the tails of gx, so for
any s ∈ OS(hx), it must also be in s ∈ OS(gx). Item (2) follows from the fact that f
surface-witnesses g, as for any s ∈ IS(gx), there is a string w in the range of f whose
1-suffix is s and, because w is not opaque, the 1-suffix of gp(w) is also s.

Lemma 15 |OS(henv)| < |OS(hdef)|.

Proof This follows directly from Lemmas 14 and 9.

A.4. Characteristic Sample for OSTIA

The characteristic sample of OSTIA is defined based on two definitions: short prefix and
kernel.

Definition (short prefixes) Let t : Σ∗ → Γ∗ be a subsequential function. The string u
is a short prefix of t iff u ∈ prefs(dom(t)) and ∀v ∈ Σ∗, tu(w) = tu(v) implies v ≥ w. Let
SP (t) denote the short prefixes of t.

Definition (kernel) Let t : Σ∗ → Γ∗ be a subsequential function. The kernel of t is the
set K(t) =

(
(SP (t) · Σ) ∩ prefs(dom(t))

)
∪ {λ}.

That is, the short prefixes of t is the set of shortest prefixes belonging to each tail
function of t. The kernel of t is then each short prefix extended with each symbol in Σ.
Having these in the characteristic example ensures that the algorithm sees examples of each
tail function of t.
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Definition (characteristic sample for OSTIA) Given a total subsequential function
t : Σ∗ → Γ∗, a strong characteristic sample T for t for OSTIA is as follows:

1. ∀u ∈ K(t),∃v ∈ dom(T ), u ∈ prefs(v)

2. ∀u ∈ SP(t), ∀v ∈ K(t), if tu 6= tv then there exist uw, vw ∈ dom(T ) such that T (uw) =
tp(u)w′, T (vw) = tp(v)w′′ and w′ 6= w′′

3. ∀u ∈ K(t),∃uv, uw ∈ dom(T ), T (uv) = tp(u)v′, T (uw) = tp(u)w′ where v′ ∧ w′ = λ

That is, each string in the kernel of t is a prefix in the domain of T (1); for each short
prefix u, for each kernel string v with a different tail function then there are examples in T
such that Tu 6= Tv (2); and for each kernel string u there are two extensions of u such that
tp(u) = T p(u) (3).

Lemma 16 Given an input D : P ∗ → Σ∗, let n =
∑

(x,y)∈D |x| ,m = max(x,y)∈D |y| , k =

|P | , l = |Σ|. SI2DLA runs in time O(n3(m+ k) + nmk + l).

Proof Based on Oncina et al. (1993), the time complexity of OSTIA is O(n3(m+k)+nmk).
For the complexity of the decomposition algorithm, notice that the complexity of a for-loop
on dom(δf ) is linear with respect to n, a for-loop on dom(δg) is linear with respect to l, a for-
loop on dom(δg) starting from qdef is sub-linear to l while a for-loop on dom(δg) starting from
qenv is a constant based on Lemma 9. Thereby algorithm 2 has complexity O(2∗l+l+n) and
algorithm 3 has complexity O(l+n). Therefore the decomposition algorithm has complexity
of O(n+ l) and complexity of SI2DLA has complexity O(n3(m+ k) + nmk + l).

Remark 18 A sufficient sample for SI2DLA is also a CS for OSTIA.

Proof There are two tail functions henv and hdef , one of which is equal to hλ for the short
prefix λ and one of which is equal to hρ for some short prefix ρ ∈ P . (The other short prefix
is of length 1 because it is ISL2.) The kernel is thus {λ} ∪ (λ · P ) ∪ (ρ · P ). It is easy to
then verify that H satisfies all the requirements in the definition of the OSTIA CS.

A.5. Correctness proofs

Lemma 20 If f̂ surface-witnesses ĝ, then given a sufficient sample of ĝ◦f̂ , SI2DLA returns
〈Tf , Tg〉 such that Tg = Tĝ.

Proof Let D be a sample that contains a sufficient sample, and let 〈Tf , Tg〉 =SI2DLA(D).

By Lemma 12, as f̂ witnesses the ISL2 class, there is a bijection between the tail functions
of ĝ and ĥ. As ĝ is a simplex ISL2 function, it has exactly two tail functions ĝpenv and
ĝpdef . Thus ĥ has exactly two tail functions, and so the output of OSTIA—i.e., the initial
hypothesis for Tf—will be a two-state machine with each state representing these two tail
functions.

These states are q1 and q2 in Tf , where q1 is the initial state. In line 2, algorithm

1 computes the output suffixes for q1 and q2 from D. Let ĥ1, ĥ2 be the tail functions
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represented by q1 and q2, respectively. For each i ∈ {1, 2}, OS(qi) = OS(ĥi), because by
the definition of surface-witnessing ĝ, there is some f̂(ρ) for every 1-suffix associated with
ĥi, and because the sample D is sufficient its domain contains ρ as a prefix. So for every
s ∈ OS(ĥi), there is a transition (q, ρ) to qi such that suff1(ω(q, ρ)) = s and thus s ∈ OS(qi).
(The other direction of the inclusion follows from D being a sample of ĥ.)

Algorithm 2 then creates a new SFST Tg by first creating two states, qenv and qdef (Alg.
2, ln 1). It then creates a function corr such that OS(corr(qenv)) is smaller than than
OS(corr(qdef)) (ln 2). As from Lemma 15 we know that |OS(ĥpenv)| < |OS(ĥpdef)|, then this

correctly associates qenv with ĥpenv and qdef and ĥpdef .
Alg. 2 then begins determining the input 1-suffix e associated with genv. Lines 3

through 5 do this by calculating the input suffixes for qenv and qdef from the output suffixes
of corr(qenv) and corr(qdef). This is possible because as by Lemma 14, IS(ĝx) ⊆ OS(ĥx).
All that remains is to deal with opaque cases, which is first done by removing from IS(qenv)
any suffixes shared with IS(qdef) if the cardinality of IS(qenv) is greater than 1 (ln 4). (This
is the case in which there is some f̂(ρ) that ends in eτ and suff1(wτ ) ∈ IS(gdef).) The
same is then done for IS(qdef) (in case e 6= τ and there is some f̂(ρ) that ends in eτ and
suff1(wτ ) = e). As because the only suffixes in OS(ĥx) not in IS(ĝx) are due to these
opaque cases, then IS(qdef) = IS(ĝpdef) and IS(qenv) = IS(ĝpenv) = {e}, and e has correctly
been found.

The algorithm then constructs the transitions for Tg based on the basic structure of the
ISL2 class: δ(qi, σ) is set to whichever state has σ in its input suffixes. As this is identical
for Tĝ has the same structure (see the definition of ISLk functions), the transition functions
for Tĝ and Tg are identical. Additionally, as the states in Tĝ correspond to ĝpenv and ĝpdef ,
then the states of Tg correspond to the states in Tĝ.

Finally, the algorithm identifies the target τ of ĝ and its output wτ by comparing
outputs from state qdef with those of qenv. This takes place in the loop starting on ln 12.
As f̂ surface-witnesses ĝ, there is at least one ρ ∈ P such that τ = pref1(f̂(ρ)). As D is
a sufficient sample of ĝ ◦ f̂ , for any such ρ there is some ρ′ρ ∈ prefs(dom(D)) such that
ĥρ′ = ĥpenv as well as some ρ′′ρ ∈ prefs(dom(D)) such that ĥρ′′ = ĥpdef . (Note that either
ρ′ or ρ′′ could potentially be λ.) Thus, in Tf there are transitions on ρ from corr(qdef)

and corr(qenv) such that first(ωf (corr(qdef), ρ)) = τ (as first(ĥpdef(ρ)) = τ) and wτ is a

prefix of ωf (corr(qenv), ρ) (because wτ is a prefix of ĥpdef(ρ)).
As such, Alg. 2 finds some such ρ (ln. 14). Setting the outputs of ωf (corr(qdef), ρ) and

ωf (corr(qdef), ρ) to wdef and wenv, respectively, it finds wτ by taking wenv · rest(wdef)
−1.

Note that if f̂(ρ) = τu for some u ∈ Σ∗, then ĥpdef(ρ) = τ · ĝτ (u) and ĥpenv(ρ) = wτ · ĝτ (u).
Thus wenv · rest(wdef)

−1 = (wτ · (ĝτ (u))) · ĝτ (u)−1 = wτ .
For all other σ ∈ Σ, it is straightforward to verify that this same loop will set the output

to σ. Similarly, the for loop in the preceding line will set all outputs from the qdef to σ. As
ĝ is left-simplex, this is also true for the corresponding transitions in Tĝ. Thus ωg = ωĝ,
where ωĝ is the transition output function in Tĝ.

The remainder of the algorithm sets the initial state, final states, and state output
functions to Tf . It is straightforward to verify that these are the same as Tĝ. Thus,
SI2DLA constructs Tg so that all of its elements are identical to those of Tĝ, so Tg = Tĝ.
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Lemma 21 If f̂ surface-witnesses ĝ, then given a sufficient sample D of ĝ◦ f̂ , SI2DLA re-
turns 〈Tf , Tg〉 such that f(Tg ◦ Tf ) = ĥ = f(Tĝ ◦ Tf̂ ).

Proof First, for any homomorphism f ′, ĝ ◦f ′ = ĥ iff for all ρ ∈ P , 1) ĝpdef(f
′(ρ)) = ĥpdef(ρ);

2) ĝpenv(f ′(ρ)) = ĥpenv(ρ); and 3) ĥf ′(ρ) = ĥf(ρ). This can be shown straightforwardly by

induction on the length of w ∈ P ∗: if w = uσ, then ĥ(w) = ĝĥ(u)(f̂(ρ)) = ĝĥ(u)(f
′(ρ)).

Alg. 3 thus modifies Tf into a one-state machine with a single state q such that for all
ρ ∈ P , ωf (q, ρ) = w such that ĝpdef(w) = hdef(ρ), ĝpenv(w) = henv(ρ), and ĝw = ĝf̂(ρ). All

outgoing transitions from corr(qenv) are removed, as there are transitions whose output
begins with wτ instead of τ and so ĝpdef(ωf (corr(qenv), ρ)) 6= ĥpdef(ρ). This leaves the

outgoing transitions from corr(qdef), which, because D is a sufficient sample of ĥ, has a
transition for each ρ ∈ P such that ĝpdef(ωf (corr(qdef), ρ)) = ĥpdef(ρ) and thus also that

ĝpdef(ωf (corr(qdef), ρ)) = ĥpdef(ρ). This makes it such that f(Tf ) will satisfy conditions (1)
and (2) above.

However, there may be a ρ for whom f̂(ρ) = w is opaque under ĝ; that is, ĝw 6= ĝĝp(w).
Alg. 3 can detect this by checking if the 1-suffix of w is not in the input suffixes of the
state in Tg corresponding to the state in Tf reached by δf (qdef , ρ) (ln 3). As ĝ is left-
simplex ISL2, this is exactly the case when w = ueτ for some u—i.e. that ĝ(w) = u′wτ
for some u′—and ĝτ 6= ĝwτ . As the transition outputs of Tf are built from samples of ĥ,
ωf (corr(qdef), ρ) = u′wτ . Line 6 thus changes this to u′τ , which because ĝ is ISL2 has a
tail function of ĝτ . As in all other cases the tail function of ωf (corr(qdef), ρ) is the same as
its output under ĝ. Thus, f(Tf ) will satisfy condition (3) above.

Finally, the two states of Tf are merged, making f(Tf ) a homomorphism. Thus, f(Tf )

satisfies all conditions for ĝ ◦ f(Tf ) = ĥ, and because Tg = Tĝ, so f(Tg ◦ Tg) = ĥ.
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