
This printout has been approved by me, the author. Any mistakes in this printout will not be fixed by the
publisher. Here is my signature and the date:

Learning Underlying Representations and
Input-Strictly-Local Functions

Wenyue Hua, Adam Jardine, Huteng Dai
Rutgers University

1. Introduction

The simultaneous inference of underlying representations (URs) and a phonological grammar from
alternating surface representations (SRs) in a morphological paradigm is a core problem in phonological
learning that only recently has seen progress (Tesar, 2014; Cotterell et al., 2015; Rasin et al., 2018). This
paper proposes a learning algorithm that infers URs and phonological processes from SRs based on the
hypothesis that phonological generalizations belong to restrictive subregular regions in the Chomsky
Hierarchy (Heinz, 2018). We give a procedure that, given sequences of morphemes paired with SRs,
learns URs and a phonological grammar that is an input strictly local (ISL; Chandlee, 2014; Chandlee &
Heinz, 2018) function. ISL functions are exactly those which make changes in the output with respect
to the local information in the input. For now, the procedure is restricted to simplex ISL processes; that
is, those exhibiting a single change. However, this illustrates that restrictive computational principles,
combined with major principles in phonological analysis, allow for significant progress in understanding
how phonological grammars and URs are learned.

The paper is organized as follows. Section 2 briefly introduces the paradigm of the learning
algorithm. Section 3 discusses the computational structure encoded in the learner. Section 4 is a detailed
explanation of the algorithm with a simple example as illustration. Section 5 compares this algorithm
with other algorithms and presents its advantages. The last section concludes the paper.

2. Overview

A phonological process can be analyzed as the application of two functions: a function ` that maps
each morpheme to its UR, and a function φ that maps each UR to its SR. The observed SRs are the
outputs of the composition of both ` and φ. Given the concatenation of morphemes m1m2m3...mn,
its SR is φ(`(m1m2m3...mn)). With the inputs and outputs given, the ultimate task is to learn the
two intertwined functions. The hypotheses of URs and phonological processes are co-dependent: a
difference in the inferred URs will incur a difference in the proposed phonological processes and vice
versa. Therefore the algorithm needs to infer URs and phonology jointly. Based on this intuition, we
propose a new paradigm of learning: exact inference based on two interacting finite-state transducers
(FSTs). The first transducer encodes `, which takes morphemes as inputs and outputs URs; the second
transducer encodes φ, which takes URs as inputs and outputs SRs.

The algorithm takes as input pairs of the concatenations of morphemes and their SRs. The algorithm
is assumed to have a morphological analysis of given SRs, due to which we can deviate from the
complexity involved in lexical semantic learning, morphosyntactic learning and the morphological
segmentation (Tesar, 2014). The primary goal is to use computational properties of the target phonology
to understand how the learning of these patterns (by either machines or humans) is possible, and how
the learning proceeds. Therefore an FST representing a specific class of subregular function is given
to the learner. If the target function is a regular function belonging to a class of sub-regular functions
that shares a particular structure, there are known techniques for learning it from positive data (Jardine
et al., 2014). The ISL class is one such class (Jardine et al., 2014) to which a great many phonological
processes belong (Chandlee & Heinz, 2018; Chandlee et al., 2018).

© 2020 Wenyue Hua, Adam Jardine, Huteng Dai
Cascadilla Proceedings Project
Completed October 10, 2020

Our goal is a provably correct algorithm whose behavior in the general case is well-understood
(Heinz, 2010; Tesar, 2014), rather than one whose behavior can only be tested by running simulations
(Hayes & Wilson, 2008; Rasin et al., 2018). The examples we use to demonstrate the algorithm are thus
simplified in order to focus on the general principles that underlie the learner.

3. Input-Strictly-Local functions and learnability

An ISL function computes the output of any input element in a string by looking at a bounded
number of input elements coming before or after it. In other words, given any input segment, segments
in a fixed length window around it can completely determine its output, which is similar to the idea of
n-gram. For example, the diagram below shows a progressive voicing assimilation process as a function
φ applying to an input /dt/ sequence.

t a d t a

↓ φ

t a d d a

Note that to compute the output of the highlighted /t/ as [d], only the preceding /d/ is relevant—the
preceding /a/, for example, is not. As φ thus depends only on sequences of length 2 (specifically, a /dt/
sequence), it is ISL2.

For any ISL function, it is ISLk if each input segment’s output depends on at most k inputs (including
the segment itself) around it. Although the ISL class is a computationally restrictive class of functions,
it has been shown to be empirically relevant for phonology. Chandlee (2014) analyzed approximately
5500 patterns from about 500 hundred languages in P-Base database (Mielke, 2004). She found 94%
of the patterns in the database are ISL. The remaining 6% includes some suprasegmental processes and
iterative and long-distance processes such as vowel and consonant harmony.

The ISL class is also learnable from positive data consisting of example input-output pairs
(Chandlee, 2014; Chandlee et al., 2014; Jardine et al., 2014). This result is crucial because the
learnability of a composition of two ISL functions is possible only if one ISL function is proven
learnable. In particular, Jardine et al. (2014) showed that by providing an abstract structure of the target
function to the learner as a priori knowledge, the algorithm Structured Onward Subsequential Function
Inference Algorithm (SOSFIA) can learn any function characterizable by deterministic FSTs. With the
structure of the FST given, the algorithm only needs to learn the output of each transition.

The current project adopts this learning strategy in which the structure of the target functions are
given to the learner a priori. However, the current project is crucially different from previous work in
that it learns two functions, a phonology function φ and a lexicon function `, from the input-output of
their composition φ ○ `. The inputs of ` are given while the inputs of φ are part of what needs to be
learned; the output of φ are given while the outputs of ` are part of what needs to be learned. However,
since Jardine et al. (2014)’s work can learn any class of functions that can be represented by varying the
outputs on some deterministic FST, the current project can in principle be extended to learn phonology
in non-ISL classes of functions.

4. General Principles and Learning Algorithm

The general procedure of the algorithm is largely motivated by phonological analysis in generative
linguistics. It strictly follows the following principles of generative phonological analysis:

(1) (a) Each morpheme has a single UR.
(b) Among allomorphs of a morpheme, the one that occurs in most environments is the UR.
(c) Different allomorphs are in complementary distribution.

While there are of course exceptions to these basic principles, they are a reasonable place to start. Based
on these fundamental principles, we give an algorithm that can discover the URs and phonological

transformations jointly. The algorithm encodes the lexicon function ` and the phonology function φ by
two FSTs. It starts out proposing two initial hypothesized functions, then detecting the inconsistencies
in lexicon hypotheses based on Principle (1a) to find what modifications are necessary, selecting URs
among allomorphs based on Principle (1b) and learning the phonological transformation based on
Principle (1c), in the end updating the transducers. The rest of the section explicates how these three
principles are incorporated in the design of the algorithm with learning a progressive assimilation process
as a toy example.

Table 1 is a toy example data set. The alphabet (or inventory of segments) Σ is {t, a, d}. The left
table gives the morphological composition and SRs of words, which is the input to the algorithm. The
right is the UR of each morpheme and the phonological process that generates the SRs based on UR
concatenations, both of which are the target outputs of the algorithm.

Morph. SR Morph. SR

r1s1 [tatta] r3s1 [ata]
r1s2 [tadda] r3s2 [ada]
r1s3 [tata] r3s3 [aa]
r2s1 [tadda] r4s1 [taddta]
r2s2 [tadda] r4s2 [taddda]
r2s3 [tada] r4s3 [tadda]

Morph. UR Morph. UR

r1 /tat/ s1 /ta/
r2 /tad/ s2 /da/
r3 /a/ s3 /a/
r4 /tadt/

phonological transformation: t → d /d

Table 1: progressive assimilation: example inputs and outputs

4.1. Step-wise Procedure of the Algorithm

Algorithm 1 provides the algorithm in pseudocode and the rest of the section illustrates how the
algorithm works in detail with the example above.

The first step of the algorithm, in line 1 of Alg. 1, is to establish two initial hypotheses for ` and
φ using FSTs. These FSTs implement the notion that the initial hypotheses of the learner assume that
the URs are identical to the surface forms (but are dependent on morphological context) and that the
phonology function is entirely faithful.

The hypothesis for the lexicon function is realized by building a prefix tree transducer (PTT) T`
and the hypothesis for phonology is realized by an ISL transducer Tφ. The PTT T` is a finite-state
representation of the input data with a tree whose branches represent shared prefixes (initial sequences)
in the input. It represents a method of parsing the data. For example, the branch from state 0 to state
1 represents several hypothesized morpheme-UR pairs1: the morpheme input r1 and the hypothesized
UR tat (the input r3 and the hypothesized UR a and the input r4 and the hypothesized UR tadd). The
parsing is realized by computing longest common prefix (lcp; the longest initial shared sequence) of the
surface forms that share an initial morpheme. For example, r1s1 (tatta), r1s2 (tatda) and r1s3 (tata)
all begin with the morpheme r1. The longest initial sequence shared by the three SRs is tat. Thereby the
SR of r1 is computed to be tat, which also becomes the algorithm’s initial guess for the UR of r1.

Notice, however, that different hypotheses for URs appear after different preceding morphemes. For
example, the hypothesized UR for s1 is ta when following r1, whereas it is da when following r2. In
this way, the PTT keeps track of the morphological context of each SR. The goal of the algorithm is to
replace the morphological context with the phonological context of the SRs.

The phonology transducer Tφ represents the phonological contexts. In an ISLk transducer, the states
represent the previous k − 1 segments. They can also be understood as the phonological environment
for each segment. In an ISLk phonology transformation, the output of each underlying segment is
determined by k many segments in total, including the underlying segment itself. Therefore the k − 1
segments consist of the phonological environment for a phonology transformation if the output string
differ from the underlying segment.

1 For clarity only the branches for r1 and r2 are shown in the PTT on the left. (The branches for r3 and r4 would
be similar to that for r1.)

1 Build PTT T` based on data, initialize Tφ to the
identity function

2 Find some m such that there are two distinct
outputs w1,w2 in T` for m

3 Initialize E1,E2 to {}
4 for m1

1...m
1
x preceding m when w1 is output do

5 Let w′

1 bet the output of m1
1m

1
2...m

1
x

6 Add the state in Tφ that w′

1 reaches to E1

7 for m2
1...m

2
y preceding m when w2 is output do

8 Let w′

2 bet the output of m2
1m

2
2...m

2
x

9 Add the state in Tφ that w′

2 reaches to E2

10 Let A be the smaller of E1,E2 and let
wA ∈ {w1,w2} be its associated output

11 Let B be the larger of E1,E2 and let
wB ∈ {w1,w2} be its associated output

12 if ∣A∣ > 2 or ∣A∣ = ∣B∣ then
13 restart the algorithm from right
14 Let e be the single member of A − (A ∩B) or A
15 Let τ be the first segment of wB , and u the rest

of wB
16 Let ρ be wA with u removed from the end
17 Set the output of τ to ρ following state e in Tφ
18 for m with multiple outputs in T` do
19 Let wB be the output of m after b ∈ B − e
20 if Let α be the single member of A ∩B then
21 if α = e then
22 undo φ for {m′

∣

T`(m
′
)
−1T`(m

′m)a = wB , T`(m
′
)

ends in α}
23 else if α ≠ e then
24 undo φ for {m′

∣

T`(m
′
)
−1T`(m

′m) ≠ wB , T`(m
′
)

ends in α}
25 Set the output of m to be wB

Algorithm 1: Pseudocode for the learner

a The operation −1 is string subtraction.

For example, Tφ in Fig. 2 is an
ISL2 transducer whose states represent one
(k − 1 = 1) single segment. The input
to the FST is underlying segments and the
output is strings of surface segments. The
output string is computed by reading input
segments one by one and returning their
corresponding outputs in the transducer.
Thus, all ISL2 functions (over the same
inventory of underlying segments) have
the same state structure. That is, they
all encode environments that consist of
the immediately preceding segment. The
initial hypothesis is that the phonology is
entirely faithful; in technical terms, Tφ
first represents the identity function. The
algorithm can then modify this hypothesis to
other ISL2 functions simply by changing the
outputs of the transitions.

The second step of the algorithm, in
line 2 of Alg. 1, is to detect inconsistency
in the initial hypothesis of `. Based on
Principle (1a), each morpheme should have
only one UR and thereby inconsistencies
in the initial hypothesis indicates the SR
is not identical to the UR, i.e. that
some phonological process is required to
generate different observed representations.
This can be observed in T` in Fig. 1
where there are multiple different transitions
outputting different strings when given the
same input morpheme m. In the example,
there is one morpheme with inconsistent UR
hypotheses: s1. Its hypothesized UR is ta
after state 1 while it is da after state 2. In
other words, it surfaces as ta after tat, a and
tadd but surfaces as da after tad.

The third step of the algorithm, from
lines 4 through 9 of Alg. 1, is to collect
the environments for the allomorphs. In T` a

unique string needs to be proposed as the output for the morpheme transition, which is the true UR. To
find the true UR among the allomorphs, according to Principle (1b), the one that occurs in more diverse
environment is the UR. Therefore the algorithm needs to collect the environment for the allomorphs in
order to learn URs. Since the algorithm knows a priori that the target phonology is ISL2, the environment
for each allomorph is just a subset of states in the transducer. For the allomorph ta, it comes after strings
tat, a and tad and for da, it comes after tad. To find the environment sets systematically, the algorithm
finds the states in Tφ that are reached by the surface forms of the morphemes immediately preceding s1.
In the example, the environment set for ta is {t, a, d} and that for da it is {d}.

The fourth step of the algorithm, in lines 10 through 13, is to determine which allomorph is the UR
based on the collected environment sets E1 and E2 for the allomorphs w1 and w2, respectively. Based
on Principle (1b), the allomorph that occurs in most diverse environment is the UR, so the algorithm sets
A to be the smaller of E1 and E2 and B to be the larger. Naively, the allomorph wB associated with B
will then be the UR. However, in two situations the environment sets collected by the algorithm will not
be the target phonological environment. The first is when the phonological transformation is regressive,

0

1

2

3

4

5

6

7

8

r1 ∶ tat

r2 ∶ tad

s1 ∶ ta

s2 ∶ da

s3 ∶ a

s1 ∶ da

s2 ∶ da

s3 ∶ a

Figure 1: (Partial) T` as initial hypothesis for `

λ ∶ λ

t ∶ λ

a ∶ λ

d ∶ λ

t:t

d:d

a:a

t:t

a:a

d:d

t:t

d:d

a:a

a:a

t:t

d:d

Figure 2: ISL2 Tφ as initial hypothesis for φ

and the second is when the process involves opacity (in the sense of non-surface true phonology). When
the process is regressive, the environment sets collected with the learner reading the input strings from
left to right is obviously not the phonological environment. When the process involves opacity, the
environment sets may contain segments that are not surface true.

Only when the process is regressive the two environment sets could be of a similar cardinality. In
simple progressive processes, the size of the environment set for the non-UR allomorph is at most 2: one
for the triggering segment, and one for non-surface true contexts (more on the latter below). However,
if the process is regressive, its size would be large, as in a regressive process the preceding context is
irrelevant. Detailed explanation and analysis are omitted for space reasons, but the algorithm can use this
fact to discover that the process is regressive, and restart and read the input strings from right to left.2 In
other words, regressive processes can be learned using the same procedure as progressive processes.

When the process involves opacity, since one single process can involve only one underlying
segment and surface segment alternation, there can be (at most one) additional segment in the
environment sets. This is discussed in more detail below.

In this example, the smaller environment set is {d} and the larger one is {t, a, d}. Since ∣{d}∣ < 2,
the algorithm chooses da as wA, i.e. the surface allomorph. As ta is associated with a more diverse
environment, the algorithm chooses it as wB , the proposed UR.

After learning the UR, the fifth step of the algorithm, in lines 14 through 16, is to learn the
phonological process which generates observed allomorphs. In order to propose a phonological process,
the algorithm has to learn the environment, the target, and the structural change of the process. Recall
that in the current paradigm, the environments are represented by states in Tφ. As here we are assuming
Tφ is ISL2, the possible environments are the preceding segment.

In order to learn the triggering segment, the algorithm looks for the environments preceding
allomorphs that are distinct from the UR. According to Principle (1c), the environments where
SR surfaces faithfully and the environment where SR differs from UR should be in complimentary
distribution. In terms of the algorithm, A ∩B = ∅. Then the environment for the process is simply the
segment preceding the non-UR allomorph. In this case, then A = {e}, where e is the environment for the
process. This is true for the example: A = {d}, where d is the segment that triggers the change.

However, A ∩B is not empty: d is also in B. This is because φ in this case is not surface true, as is
often the case for phonological processes (McCarthy, 1999). Opacity may interfere so that the observed
strings of segments are not the actual phonological environment of a transformation. In other words, the

2 Deterministic FSTs that read the input right-to-left are known as right-subsequential transducers, and are a
standard variant of FSTs (Mohri, 1997).

observed environment sets may not be the true underlying environment sets.
There are two cases where the observed environment sets differ from the true ones, as there are two

types of opacity that can occur with a single process: (self-)counter-feeding (CF) and (self-)counter-
bleeding (CB). In CF, φ is not sensitive to its own output: in the ISL2 case, this is exactly when φ
changes an underlying τ to ρ following ρ in the input. Since ρ and τ are distinct, there can be instances
in the output where a surface ρ derived from an underlying τ is followed by a τ in the output. Therefore,
opacity is CF if and only if the triggering segment in the environment set A for the non-UR allomorph
is also observed in the elsewhere environment set B. In CB, the opposite happens: φ destroys its own
triggering environment. Specifically for the ISL2 case, φ changes τ to ρ following another input τ . In
this case, there may be instances where an underlying τ appears to have changed to ρ following another
ρ—exactly in that case when the ‘triggering’ ρ is derived from an underlying τ . Thus a member of the
elsewhere environment set may appear in the triggering environment set.

Thus, algorithmically, opacity can be detected when the intersection between A and B is non-
empty: A ∩B ≠ ∅. Specifically, for CF, the true underlying environment sets are A and B − (A ∩B),
respectively. For CB, the true underlying environment sets are A − (A ∩ B) ≠ ∅ and B, respectively.
If the opacity is CF, A contains only triggering segment(s); if the opacity is CB, A also contains one
other member of B. In the example, since A = {d} and B = {t, a, d}, the process involves CF opacity
because A ∩ B = {d} ≠ ∅. There is also CB opacity. The reader can confirm that if the rule were
t → d / t there may be datasets where A = {t, d} and B = {a, d}. In such a case, the algorithm
identifies the triggering environment e as the single member d of the set A − (A ∩ B). In general, the
triggering segment e is either the only segment of A or A − (A ∩B).

After learning the environment of the process, in the sixth step the algorithm deduces the target and
the change by the differences in the two allomorphs. Knowing the UR and non-UR SR of a morpheme,
the target and change can be easily learned by comparing the mismatch between the two allomorphs.
The faithful allomorph wB begins with the target segment τ , and the modified allomorph wA exhibits
the structural change ρ. The remainder u of wB is thus the maximal final sequence shared between wA
and wB . Thus in line 16 the algorithm removes u from the end of wA and wB to calculate the structural
change ρ. In the example, the two allomorphs are wA = da and wB = ta. The target is thus the first
segment t in ta, the shared final sequence u is a, and so the structural change is da with a removed, or d.

To reflect this change in its hypothesis for the phonology, in line 17 the algorithm changes the output
of the transition on τ from state e in Tφ to ρ. This creates a transducer that thus implements the rule
τ → ρ / e . In the running example, the transition on t on state d is modified such that its output is
d, as shown in Fig. 4. The FST Tφ will thus change any input t to a d following a d in the input.

0 2 6
r2 ∶ tad s1 ∶

t
�da

Figure 3: Partial modified T`

λ ∶ λ d ∶ λ t ∶ λ
d:d t:

d
�t

Figure 4: Partial modified Tφ.
The seventh step and the final step of the algorithm, shown in the for loop from lines 18 through

25, is thus to update its hypothesis for `. For every morpheme m that has multiple outputs in T`, the
algorithm can identify the UR by finding the output wB that follows an elsewhere environment b ∈ B−e.

The final step is to infer the UR for morphemes incurring opacity, updating their URs. The algorithm
searches for such morphemesm′ incurring opacity by whether the morpheme ends in α, whether α is the
triggering segment, and whether the following morpheme m surface as its UR or not. When the opacity
is CF, m′ ends in α and α = e. m′ needs to undo the phonology if the following morpheme m does not
have phonology applied in it. When the opacity is CB, m′ ends in α but α is not the triggering segment.
m′ needs to undo the phonology when the following morpheme m does have phonology applied. In
this example, based on steps 5, the process involved CF. r4 with the SR tadd is the morpheme since
T`(r4)

−1T`(r4s1) = ta = UR while T`(r4) = tadd which ends in d, the only element in {t, a, d} ∩ {d}.
The algorithm computes its UR by undo the phonology φ on tadd: changing the segment which is
mistaken as a triggering segment d to its UR t: tadd → tadt.3 The update in the PTT is partially
presented in Fig. 5:

3 This is computed as tadd(d)−1 ⋅ t = tadt, where ⋅ is concatenation.

0 1
r4 ∶

t
tad�d

Figure 5: Partial modified T`

After going through all the steps above, the algorithm
finishes the learning process. We can check whether the learning
is correct by testing some example data points, and they indeed
conform to the observed data set. For example, φ ○ `(r2s1) =
φ(tad ⋅ ta) = tadda and φ ○ `(r4s1) = φ(tadt ⋅ ta) = taddta.

5. Discussion

We have thus demonstrated with a simple progressive assimilation case how a restrictive ISL2

characterization of phonology allows for a procedure that can discover URs and a phonology—
including non-surface true cases—from morphophonological alternations. The thrust of the algorithm
was to take advantage of the fact that the ISL2 class gives the learner specific hypotheses about a
process’s environments. This same procedure can be shown to learn epenthesis, deletion, and regressive
assimilation and dissimilation. While there are several simplifying assumptions, the goal of this paper
has been to demonstrate how classes of functions that make specific hypotheses about the nature of
phonological environments provide a way for a learner to navigate the difficult problem of learning URs
and a phonology.

Furthermore, this general learning paradigm is computationally efficient and thus cognitively
plausible, can be studied analytically so its behavior in the general case is well-understood, and is specific
to phonology. We argue that these characteristics make the learner compare favorably to other efforts
in learning URs. For example, under Optimality Theory, some systems are computationally difficult.
Jarosz (2006) used the idea of maximum likelihood to learn grammars as well as URs which exhaustively
evaluates the space of all possible rankings of constraints and the space of possible URs. Apoussidou
(2007) designed an algorithm purely based on the interaction of constraints: not only markedness and
faithfulness constraints but also lexical constraints that penalize the use of the different possible URs
for a morpheme monolithically. These two systems face exceptional computational difficulty since the
combinatorics of constraints grow very fast, especially Apoussidou (2007)’s system which explodes the
number of constraints with lexical constraints.

Using probabilistic finite state machines, Cotterell et al. (2015) provide a procedure for learning
URs and phonology using loopy belief propagation in a directed graphical model whose variables are
unknown strings and whose conditional distributions are encoded as finite-state machines with trainable
weights. It updates the distribution towards the observed SRs by iteratively updating the parameters.
Cotterell’s algorithm uses probabilistic finite-state transducer because exact inference based on this
framework with string-based variables is uncomputable.

Using the principle of Minimum Description Length (MDL) (Solomonoff, 1964; Rissanen, 1978),
Rasin et al. (2015) shows how the simultaneous induction of lexicon, morphological segmentation and
phonology is achieved. This is a powerful learning algorithm they demonstrate can learn optionality,
opacity and abstract URs (Rasin et al., 2018; Rasin & Katzir). However, it has only been tested on toy
data sets, and so its applicability in more general settings is not well understood.

There are three advantages of the proposed algorithm compared with algorithms above. First, since
the algorithm imposes a computational structure on possible phonological grammars, it reduces the
search space by restricting the possibilities within a region of subregular functions. Therefore it can
be computed efficiently and thus is cognitively plausible. Second, this structure encodes a hypothesis
specific to phonology and thus makes predictions specific to phonology. Third, this algorithm is provably
correct, i.e. it can be analyzed as that a theoretical guarantee can be provided about what can be learned
and what cannot. Therefore we can understand precisely how the algorithm will behave in any situation.

Of course, there are many simplifying assumptions, most notably that the phonology is ISL2, and
that the data exhibits a single process making a change to a single segment. However, as the learning
procedure here is based on the more general idea of modifying the outputs of transitions, it can be used
as a first step towards algorithms that can learn other subclasses of regular functions that are defined by
a shared structure. This includes the full ISL class, which includes processes in which more than one
segment is affected and interactions between processes (see Chandlee et al., 2018). Another such class
is the output strictly local class (Chandlee, 2014), which can capture iterative spreading processes such
as nasal spreading in Johore Malay (Onn, 1980). The output strictly local functions can be learned via a

procedure that assumes shared states but not transitions (Chandlee et al., 2015). The algorithm’s ability
to discover shared environments in which changes occur may also be able to used to discover natural
classes, especially when using finite-state machines that represent features (Heinz & Koirala, 2010).

6. Conclusion

Inferring URs and phonological processes from observed SRs has been both a central problem in
understanding how children learn phonology as well as in phonological analysis. This paper aims at
proposing a partial solution to this complicated problem. The main theoretical claim of this paper is
that knowing the computational property of phonology a priori provides avenue for learning URs and a
grammar. Assuming that phonology is sub-regular, learning phonology and URs can be demonstrated as
a feasible and tractable problem. This line of research can also determine which set of phonological
transformations is learnable where strong typological predictions can be made, thereby identifying
the universal computational property of phonology from the perspective of learnability. Although this
algorithm is very restricted on the type of the phonological transformation and the number of processes
that can be learned simultaneously, we expect this work will be a first step towards provably-correct
algorithms learning more general and complex phonological transformations.

References

Apoussidou, D (2007). The learnability of metrical phonology: Lot. Universiteit van Amsterdam [Host] .
Chandlee, Jane (2014). Strictly local phonological processes. Ph.D. thesis, University of Delaware.
Chandlee, Jane & Jeffrey Heinz (2018). Strictly locality and phonological maps. LI 49, 23–60.
Chandlee, Jane, Rémi Eyraud & Jeffrey Heinz (2014). Learning Strictly Local subsequential functions. Transactions

of the Association for Computational Linguistics 2, 491–503.
Chandlee, Jane, Rémi Eyraud & Jeffrey Heinz (2015). Output strictly local functions. Proceedings of the 14th

Meeting on the Mathematics of Language (MoL 2015), Association for Computational Linguistics, Chicago,
USA, 112–125.

Chandlee, Jane, Jeffrey Heinz & Adam Jardine (2018). Input strictly local opaque maps. Phonology 35:2, 171–205.
Cotterell, Ryan, Nanyun Peng & Jason Eisner (2015). Modeling word forms using latent underlying morphs and

phonology. Transactions of the Association for Computational Linguistics 3, 433–447.
Hayes, Bruce & Colin Wilson (2008). A maximum entropy model of phonotactics and phonotactic learning.

Linguistic inquiry 39:3, 379–440.
Heinz, Jeffrey (2010). Learning long-distance phonotactics. Linguistic Inquiry 41:4, 623–661.
Heinz, Jeff (2018). The computational nature of phonological generalizations. Phonological Typology, Phonetics

and Phonology p. 69.
Heinz, Jeffrey & Cesar Koirala (2010). Maximum likelihood estimation of feature-based distributions. Proceedings

of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and Phonology,
Association for Computational Linguistics, Uppsala, Sweden, 28–37.

Jardine, Adam, Jane Chandlee, Rémi Eyraud & Jeffrey Heinz (2014). Very efficient learning of structured classes of
subsequential functions from positive data. International Conference on Grammatical Inference, 94–108.

Jarosz, Gaja (2006). Rich lexicons and restrictive grammars: Maximum likelihood learning in Optimality Theory.
Ph.D. thesis, Johns Hopkins University.

McCarthy, John J (1999). Sympathy and phonological opacity. Phonology 16:3, 331–399.
Mielke, Jeff (2004). P-base: Database of sound patterns.
Mohri, Mehryar (1997). Finite-state transducers in language and speech processing. Computational Linguistics 23:2,

269–311.
Onn, Farid Mohd (1980). Aspects of Malay phonology and morphology: A generative approach. Universiti

Kebangsaan Malaysia.
Rasin, Ezer & Roni Katzir (). Learning abstract underlying representations from distributional evidence .
Rasin, Ezer, Iddo Berger & Roni Katzir (2015). Learning rule-based morpho-phonology. Work. pap., MIT,

Cambridge, MA Google Scholar Article Location .
Rasin, Ezer, Iddo Berger, Nur Lan & Roni Katzir (2018). Learning phonological optionality and opacity from

distributional evidence. Proceedings of NELS, vol. 48.
Rissanen, Jorma (1978). Modeling by shortest data description. Automatica 14:5, 465–471.
Solomonoff, Ray J (1964). A formal theory of inductive inference. part i. Information and control 7:1, 1–22.
Tesar, Bruce (2014). Output-driven phonology: Theory and learning. 139, Cambridge University Press.

	Introduction
	Overview
	Input-Strictly-Local functions and learnability
	General Principles and Learning Algorithm
	Step-wise Procedure of the Algorithm

	Discussion
	Conclusion

