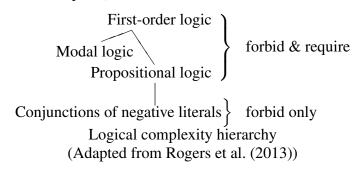

How constraints refer to nothing: The correct notion of substructure for phonology

Nick Danis^{1,3}, Jeffrey Heinz², and Adam Jardine³

¹Princeton University, ²Stony Brook University, and ³Rutgers University

Overview


 Many markedness constraints identify illicit substructures of a representation Ex., *NC, *CODA, *[voice]

- The **superstructure problem**: a pattern in which a well-formed structure is a **superstructure** of an ill-formed one (Jardine and Heinz, in press; Jardine, 2016; Danis, 2017)
- We propose a strong (and mathematically natural)
 definition of substructure from logic and model
 theory that can capture these cases in a unified way
 and maintains a restrictive, negative conception of
 markedness

Negative Markedness

• From a logical perspective, the most restrictive constraints can only **forbid substructures** (Jardine and Heinz, in press)

• Example of first-order:

$$\forall x, \exists y [+\text{nasal}](x) \rightarrow [-\text{voice}](y)$$
"If there is a nasal, there must be a voiceless segment (somewhere in the word)"

• Example negative (string) literal:

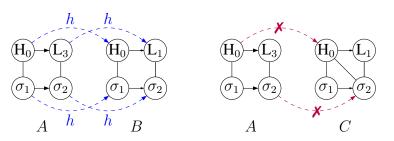
The Superstructure Problem

- Given non-linear representations, some constraints appear to **require** structure
- **Aghem** (Hyman, 2014)
 - When H tone is followed by L, it spreads to the right:

 a. /é nòm/ → [é nôm] 'to be hot'
 b. /fú kìa/ → [fú kîa] 'your sg. rat'
 c. e-nom → e-nom [é nôm] 'to be hot'
 | | | | | | |
 H L H L
 - Constraint: "H must spread to a following L-toned mora"
 - The well-formed structure includes the ill-formed structure

*H L
$$\vee$$
 H L \cap \cap \cap \circ \circ \circ

• CODACOND (Ito 1986, Ito and Mester, 1994)



- Other examples:
 - Ngbaka coocurrence restrictions on complex consonants (Sagey 1986, Danis 2017)
 - Spreading in Tingrinya and other languages (Hayes 1986)

Defining Substructure

- **Substructure:** For two structures A and B in S, A is a substructure of B iff there is a mapping h from D^A to D^B such that
 - for every unary relation R_i , $d^A \in R_i$ in A iff $h(d^A) \in R_i$ in B, and
 - for every binary relation R_j , $(d_1^A, d_2^A) \in R_j$ in A iff $(h(d_1^A), h(d_2^A)) \in R_j$ in B
- This definition is standard in logic and model theory (Libkin, 2004)
- This **strong definition** differs from earlier (for phonology) **weak definition**, which uses **if** instead (Hayes, 1986; Jardine and Heinz, in press; Jardine, 2017)

Aghem Tone Spreading

- The mapping h from A to B satisfies the definition, but there is no such mapping from A to C
- Thus, B is not grammatical for Aghem, but C is.

Discussion

- The strong definition is more expressive than the weak, but still **negative**
- Constraints like SPEC-T ("Syllables must be specified for tone"; Yip, 2002)) are different; they warrant further study
- Aghem

 Weak def
- The right formal definitions of markedness and representations can unify distinct phenomena.

Acknowledgements & References

Acknowledgements

We thank audiences at PhonX (The Rutgers phonetics and phonology study group) and NECPhon for their comments and insights.

Select References

Danis, Nick (2017). Complex place and place identity. PhD thesis, Rutgers University

Hayes, Bruce (1986). Assimilation as spreading in Toba Batak. LI, 17(3):467–499.

Hyman, Larry (2014). How autosegmental is phonology? The Linguistic Review, 31:363-400.

Jardine, Adam (2016). Locality and non-linear representations in tonal phonology. PhD thesis, University of Delaware

Jardine, Adam (2017). The local nature of tone-association patterns. *Phonology*, 34:385–405.

Jardine, Adam and Heinz, Jeffrey (in press). Markedness constraints are negative: an autosegmental constraint definition language. In *Proceedings of CLS 51*.

Libkin, Leonid (2004). Elements of Finite Model Theory. Berlin: Springer-Verlag.

Rogers, James, Heinz, Jeffrey, Fero, Margaret, Hurst, Jeremy, Lambert, Dakotah, and Wibel, Sean (2013). Cognitive and sub-regular complexity. In Formal Grammar, volume 8036 of Lecture Notes in Computer Science, pages 90–108. Springer.

Yip, Moira (2002). Tone. Cambridge University Press.

 $\textbf{Author\,emails:} \ \texttt{ndanisprinceton.edu, jeffrey.heinzsbu.edu, adam.jardinerutgers.edu}$