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Overview

◮ Markedness (/output/surface) constraints constitute our theory of

how grammars decide well-formedness of phonological structure

◮ The content of markedness constraints is not arbitrary (Eisner,

1997; de Lacy, 2011; Rogers et al., 2013)

◮ The most restrictive theory of markedness holds that constraints

are entirely negative; meaning they can only forbid substructures

(Jardine and Heinz, in press)
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Overview

◮ However, there are instances of the superstructure problem,

where some patterns cannot be captured using certain notions of

substructure (Jardine and Heinz, in press; Jardine, 2016; Danis,

2017)

◮ We propose a strong definition of substructure that can capture

these cases in a unified way and maintains a restrictive, negative

conception of markedness

◮ We use model theory, which gives precise definitions of

representations and constraints
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Banned substructure constraints

◮ Many markedness constraints identify illicit pieces of a

representation

Ex., *NC
˚

, *CODA, *[voice]

◮ A restrictive theory of markedness only allows constraints of this

type

First-order logic

✟✟ ❏
❏
❏

Modal logic

Propositional logic















positive & negative

Conjunctions of negative literals
}

negative only

(Rogers et al., 2013)

◮ How do we define ‘piece’?
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Banned substructure constraints

◮ Jardine and Heinz (in press) and Jardine (2016) take the

following definition from the notion of subgraph

◮ Fix a signature with elements D and (binary or unary) relations

R1, ...,Rn

S = 〈D;R1,R2, ...,Rn〉

Definition (Weak substructure)

For two structures A and B in S , A is a substructure of B iff there is a
mapping h from DA to DB such that

◮ for every unary relation Ri, dA ∈ Ri in A implies h(dA) ∈ Ri in B,

and
◮ for every binary relation Rj, (d

A
1 , dA

2 ) ∈ Rj in A implies

(h(dA
1 ), h(dA

2 )) ∈ Rj in B
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Banned substructure constraints

“Hs should not be multiply associated”

H0

σ1 σ2

L0 H1

σ2 σ3 σ4

h

h h
A B

Definition (Weak substructure)

For two structures A and B in S , A is a substructure of B iff there is a

mapping h from DA to DB such that

◮ for every unary relation Ri, dA ∈ Ri in A implies h(dA) ∈ Ri in B, and

◮ for every binary relation Rj, (d
A
1 , dA

2 ) ∈ Rj in A implies

(h(dA
1 ), h(dA

2 )) ∈ Rj in B
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The superstructure problem

◮ The weak definition captures many markedness constraints, but

not all (Jardine and Heinz, in press; Danis, 2017)

◮ There are markedness constraints that appear to require structure

◮ A variety of markedness generalizations cause what we call the

superstructure problem under the weak definition, which we

propose to solve by positing a stronger definition
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The superstructure problem

Aghem (Hyman, 2014)

◮ When H tone is followed by L, it spreads to the right:
a. /é - nòm/ → [é - nôm] ‘to be hot’

b. /fú - kı̀a/ → [fú - kı̂a] ‘your sg. rat’

c. e-nom → e-nom [é - nôm] ‘to be hot’

H L
★★

H L

◮ Constraint: “H must spread to a following L-toned mora”
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The superstructure problem

◮ We can’t posit this as a banned substructure constraint using the

weak definition

* H L

σ σ

XH L

σ σ

Definition (Weak substructure)

For two structures A and B in S , A is a substructure of B iff there is a

mapping h from DA to DB such that

◮ for every unary relation Ri, dA ∈ Ri in A implies h(dA) ∈ Ri in B, and

◮ for every binary relation Rj, (d
A
1 , dA

2 ) ∈ Rj in A implies

(h(dA
1 ), h(dA

2 )) ∈ Rj in B
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The superstructure problem

◮ A nearly identical issue arises in CODACOND (Ito, 1986; Ito and

Mester, 1994)

* C C]σ

place

X[CVC C]σ V

place
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The superstructure problem

◮ These are just two examples, but the same issue arises elsewhere:

◮ Ngbaka coocurrence restrictions on complex consonants (Danis,

2017)
◮ Spreading in Tingrinya and other languages (Hayes, 1986)
◮ Constraints like SPEC-T (“Syllables must be specified for tone”;

Yip, 2002))
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A strong definition of substructure

Definition (Strong substructure)

For two structures A and B in S , A is a substructure of B iff there is a

mapping h from DA to DB such that

◮ for every unary relation Ri, dA ∈ Ri in A iff h(dA) ∈ Ri in B, and

◮ for every binary relation Rj, (d
A
1 , dA

2 ) ∈ Rj in A iff

(h(dA
1 ), h(dA

2 )) ∈ Rj in B
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A strong definition of substructure

◮ The strong definition requires that any relation between elements

in the superstructure also belong in the superstructure

Definition (Strong definition of substructure)

...

◮ for every binary relation Rj, (d
A
1 , dA

2 ) ∈ Rj in A iff (h(dA
1 ), h(dA

2 )) ∈ Rj

in B

◮ This solves the superstructure problem both in Aghem and

CODACOND:

* H L

σ σ

XH L

σ σ

* C C]σ

place

X[CVC C]σ V

place
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Discussion

◮ Any structure A that is a substructure of B under the strong

definition will also be a substructure under the weak definition

◮ Logic of the grammar is still the same, so negative markedness

constraints are still computationally simple (Jardine and Heinz,

in press)

◮ The two definitions are equivalent with respect to strings, but

with non-string structures the stonger definition is strictly more

expressive
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Discussion

X

Strong def

Weak def
×

Aghem

Figure: Graphsets captured by strong definition are a strict superset of those

captured by weak definition
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Discussion

◮ The strong definition does not, by itself, capture all cases of the

superstructure problem

◮ Place restrictions in Ngbaka complex consonants (Danis, 2017)

require assuming a spreading analysis

◮ Constraints like SPEC-T still require explicit marking of

unspecified units

SPEC-T: * σ© (notation from Pulleyblank, 1986)

X H L

σ σ

* H

σ σ©
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Conclusion

◮ An explicit theory of markedness requires an explicit definition

of substructure

◮ The strong definition proposed here accounts for a wider range

of markedness generalizations with negative constraints
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Thank You
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