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Introduction

◮ Autosegmental representations (ARs) (Goldsmith, 1976;
Clements, 1976) have been claimed to capture non-local
phenomena in a local way (McCarthy, 1982; Odden, 1994).

◮ We apply a computational notion of locality to a selection of
tone processes to get a more nuanced understanding of this
ability of ARs.

◮ Three-way distinction:
◮ Local even without ARs.
◮ Local only with ARs.
◮ Not local even with ARs.



Computational notion of locality

◮ Based on the Input Strictly Local (ISL) functions, which were
originally defined in terms of formal language theory and
automata theory (Chandlee, 2014).

◮ We’ll be using the logical characterization of ISL proposed by
Chandlee and Lindell (to appear).

◮ ISL function = Quantifier-free First Order Graph Interpretation

◮ Why use logic?
◮ We can directly extend a restrictive, explicit notion of locality

from strings to phonological representations



FO Graph interpretations

(1) Rimi (Schadeberg, 1979; Meyers, 1997)
/u-pú̧m-a/ 7→ [u-pu̧m-á] ‘to go away’
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UR string model defined with:

◮ 5 positions, labeled with segments

◮ successor function: s(0) = 1, s(1) = 2, ..., s(4)=4

◮ predecessor function p(4) = 3, p(3) = 2, ..., p(0)=0



FO Graph interpretations

◮ The SR string graph is defined in terms of the UR graph using
FO logic formulas (Engelfriet and Hoogeboom, 2001).
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◮ H(x) is True iff position x bears a high tone.

◮ V (x) is True iff position x is a vowel.

◮ ϕ
V́

def
= V (x) ∧ H(p(p(x)))

◮ An output position bears a high tone iff it’s a vowel and the
previous vowel bears a high tone in the input graph.



FO Graph interpretations

◮ The SR string graph is defined in terms of the UR graph using
FO logic formulas (Engelfriet and Hoogeboom, 2001).
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◮ H(x) is True iff position x bears a high tone.

◮ V (x) is True iff position x is a vowel.

◮ ϕ
V́

def
= V (x) ∧ H(p(p(x)))

◮ An output position bears a high tone iff it’s a vowel and the
previous vowel bears a high tone in the input graph.



FO Graph interpretations

◮ The SR string graph is defined in terms of the UR graph using
FO logic formulas (Engelfriet and Hoogeboom, 2001).
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◮ H(x) is True iff position x bears a high tone.

◮ V (x) is True iff position x is a vowel.

◮ ϕ
V́

def
= V (x) ∧ H(p(p(x)))

◮ An output position bears a high tone iff it’s a vowel and the
previous vowel bears a high tone in the input graph.



ISL = Quantifier-free FO Logic

ϕ
V́

def
= V (x) ∧ H(p(p(x)))

◮ These formulas do not use the full power of FO: they don’t
use quantifiers.

◮ The processes that can be described in this way are those for
which the trigger and the target form a contiguous substring

of bounded length in the input string.

◮ The boundedness means we can use the successor or
predecessor function repeatedly to determine whether both
the target and trigger are present.

◮ No quantifier is needed.
(e.g, no “... ∧ (∃z)[...]”)



Autosegmental Representation (AR) Graphs

◮ Goal: extend this same notion of locality (QF FO describable)
from string graphs to AR graphs (Jardine, 2016).

◮ Example: VV́VV́V́V
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Autosegmental Representation (AR) Graphs
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Method

◮ We designate as ISL those patterns that can be describe with
QF FO using string graphs.

◮ We designate as AISL those patterns that can be described
with QF FO using AR graphs.

◮ We illustrate that ISL patterns are also AISL but not vice versa

◮ We will also identify cases that are neither ISL nor AISL.



AISL Analyses

Process ISL? AISL?

Bounded spread (Bemba) !

Bounded shift (Rimi) !

Unbounded shift (Zigula) ✗

Unbounded OCP (Arusa) ✗

Unbounded spread (Ndebele) ✗

Meussen’s rule (Shona) ✗



AISL Analyses

Bounded spread

◮ Bemba (Bickmore and Kula, 2013)
/bá-la-kak-a/ 7→ [bá-lá-kak-a] ‘they tie up’
/tu-la-bá-kak-a/ 7→ [tu-la-bá-kák-a] ‘we tie them up’
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AISL Analyses

Bounded spread

aO(x , y)
def
= aI (x , y) ∨ aI (p(x), y)
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AISL Analyses

Bounded shift

◮ Rimi (Schadeberg, 1979; Meyers, 1997)
/u-pú̧m-a/ 7→ [u-pu̧m-á] ‘to go away’
/rá-mu-ntu/ 7→ [ra-mú-ntu] ‘of a person’
/mu-tém-i̧/ 7→ [mu-tem-́ı̧] ‘chief’
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AISL Analyses

Bounded shift

aO(x , y)
def
= aI (p(x), y)
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AISL Analyses

Process ISL? AISL?

Bounded spread (Bemba) ! !

Bounded shift (Rimi) ! !

Unbounded shift (Zigula) ✗

Unbounded OCP (Arusa) ✗

Unbounded spread (Ndebele) ✗

Meussen’s rule (Shona) ✗



AISL Analyses

Unbounded shift

◮ Zigula (Kenstowicz and Kisseberth, 1990)
ku-gulus-a ‘to chase’
ku-lombéz-a ‘to ask’
ku-lombez-éz-a ‘to ask for’
ku-lombez-ez-án-a ‘to ask for each other’
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AISL Analyses

Unbounded shift

lastH(y)
def
= H(y) ∧ s(y) = y

penultV(x)
def
= V (x) ∧ (s(s(x)) = s(s(s(x)))

aO(x , y)
def
= penultV(x) ∧ LastH(y)
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AISL Analyses

Unbounded OCP

◮ Arusa (Odden, 1994)
śıdáy ‘good’

enkér siday ‘good ewe’
olórika siday ‘good chair’

H

V V V V

H

V V

7→
H

V V V V V V



AISL Analyses

Unbounded OCP

HO(x)
def
= H(x) ∧ ¬H(p(x))
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AISL Analyses

Process ISL? AISL?

Bounded spread (Bemba) ! !

Bounded shift (Rimi) ! !

Unbounded shift (Zigula) ✗ !

Unbounded OCP (Arusa) ✗ !

Unbounded spread (Ndebele) ✗

Meussen’s rule (Shona) ✗



Unbounded spread

◮ Ndebele (Sibanda, 2004)
/ú-ku-hlek-a/ 7→ [ú-kú-hlek-a] ‘to laugh’
/ú-ku-hlek-is-a/ 7→ [ú-kú-hlék-is-a] ‘to amuse’
/ú-ku-hlek-is-an-a/ 7→ [ú-kú-hlék-́ıs-an-a] ‘to amuse e. o.’
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Unbounded spread

aO(x , y)
def
= aI (x , y) ∨

(

antepenultV(x) ∧ HI (y)
)
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Unbounded spread

◮ No QF statement can identify all intermediate vowels
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Meussen’s Rule

◮ Shona Odden (1986); Meyers (1987, 1997)
/né-hóvé/ 7→ [né-hòvè]
/né-é-hóvé/ 7→ [né-è-hóvé]
/né-é-é-hóvé/ 7→ [né-è-é-hòvè]
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Meussen’s Rule

◮ Need to pick out the set of even H’s—this is well-known to
be not definable even with (first-order) quantification
(Thomas, 1982)

LO
def
= HI (x)∧even(x)

H H H H
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Summary

Process ISL? AISL?

Bounded spread (Bemba) ! !

Bounded shift (Rimi) ! !

Unbounded shift (Zigula) ✗ !

Unbounded OCP (Arusa) ✗ !

Unbounded spread (Ndebele) ✗ ✗

Meussen’s rule (Shona) ✗ ✗



Discussion

◮ Tone patterns include both ISL and non-ISL patterns
Unbounded shift:

V V́ V V V V 7→ V V V V V́ V

◮ With AISL, we can capture some non-ISL patterns

H

V V V V V

7→
H

V V V V V

◮ Thus, ARs make some non-local patterns local



Discussion

Unbounded spread:

H
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◮ One option for non-ISL/AISL processes is to further enrich

the representations

◮ We might consider AR models with < instead of p
(generalization of Strictly Piecewise (Heinz, 2010; Rogers
et al., 2010))



Discussion

◮ Another option is to consider output-based locality

(2) Johore Malay (Onn, 1980)
/p@Nawasan/ 7→ [p@Nãw̃ãsan] ‘supervision’

◮ Output SL functions have been characterized for strings in
terms of formal language and automata theory (Chandlee
et al., 2015)

◮ A logical characterization of OSL remains for future work.



Why do logical characterizations matter?

◮ Enable a rigorous, restrictive, and learnable (Chandlee and
Heinz, 2018) definition of what it means to be “local” and
“non-local”.

◮ Directly extend these notions from strings to ARs.

◮ Logics are tightly connected to the complexity of functions
(Filiot and Reynier, 2016).

◮ Computational complexity classes have been shown to capture
the typology of spreading (Heinz and Lai, 2013).



Conclusion

◮ We directly compared different representations to better under
how ARs can render non-local processes local.

◮ Given an input-based notion of locality, ARs capture some,
but not all, patterns that are non-local over strings.

◮ In future, an output-based notion of locality may
accommodate additional processes that are not AISL.
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