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1 Introduction

A central goal of generative linguistics is to determine abstract universals that govern the
shape and structure of language (Chomsky, 1957; Baker, 2009). An abstract computational
universal of natural language phonology is that it is regular (Johnson, 1972; Kaplan and
Kay, 1981, 1994). Briefly, a pattern is regular if and only if it can be computed with
constant memory; that is, there is some fixed amount of memory for which the pattern can
be computed for any input string, regardless of its length. Recent work has pursued stronger
computational universals for phonology by positing further constraints on the nature of
this memory (Heinz, 2009; Heinz and Lai, 2013; Chandlee and Heinz, 2018, a.o.). This
work argues that these universals allow for restrictive, yet robust typological generalizations
about the shape and structure of phonology that are unavailable to previous derivational or
Optimality Theory (OT)-based theories (Chandlee et al., 2018; Heinz, 2018; Jardine, 2019).

However, a criticism of a perspective that focuses on computational universals is that
it does not allow for a theory that intensionally represents phonological generalizations in
the way phonologists recognize them. Writes Pater (2018, p. 156): “it is a mistake to
conceive of [such computational work] as an alternative to OT (and other theories with similar
goals)” because “it provides no obvious way of stating the kinds of substantive restrictions
on phonological systems that are needed to delimit phonological typology.”

In this article, we refute this criticism by presenting a computational formalism that
retains the important discoveries about the computational restrictiveness of phonology but in
a way that better aligns with commonly-held assumptions about phonological representations
and grammars. Specifically, we introduce Boolean Monadic Recursive Schemes (BMRSs)
and demonstrate their utility for phonological analysis. As we will show and discuss, this
formalism has a well-understood complexity bound that corresponds to previous results in
the study of computational phonology, but it also provides a way to implement phonological
substance. As such it addresses several prior criticisms of computational approaches to
phonology. Furthermore, we argue that it solves problems of both rule-based, derivational
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frameworks and OT grammars. Thus, the BMRS formalism is a theory of phonology that
captures both intensional and computational generalizations about phonology in a way that
is unavailable to previous frameworks.

BMRSs are based on the well-studied concept of recursive program schemes, which are
an abstract way of studying the complexity of algorithms (Moschovakis, 2019). Algorithms
are crucial to linguistic theory, no less so in either rule- or constraint-based phonological
frameworks. Algorithms are commonly posited in derivational phonology (e.g., syllabifica-
tion, autosegmental association paradigms, stress-building paradigms, etc.). And a single
algorithm that does all of these things is central to theories like Optimality Theory, which
implements them all via optimization over an infinite set of candidates.

BMRSs implement a simple ‘if...then...else’ structure over properties of elements in phono-
logical representations. Here we give a brief, simple example of what a BMRS analysis looks
like, with a more thorough explanation of the formalism to follow in §3. The heart of a
BMRS analysis is a system of logical predicates that establish the conditions under which a
segment holds a particular feature value in the output. For example, consider a process in
which a high (H) tone, marked below as an acute accent, spreads from an underlying syllable
rightward, up to the penult.

(1) /σσ́σσσ/ → [σσ́σ́σ́σ]

The crucial question here in computing the output is determining whether or not an output
syllable has the property of carrying a high tone. (For now we abstract away from non-string
representations like autosegmental representations, though we discuss how to extend BMRSs
to non-string representations at the end of the article.) The BMRS predicate below describes
how to compute this. The variable x refers to any given input syllable, > means true, and
⊥ means false.

(2) �́o(x) = if final(x) then ⊥ else

if �́o(p(x)) then > else

�́(x)

The equation in (2) defines when �́o(x); that is, when x is H-toned in the output. The first
line on the right-hand side of the equation states that if x is final, then �́o(x) evaluates to ⊥
(false). This implements a non-finality condition on H-tone spreading. If x is not final, then
evaluation goes to the second line, which states that if the syllable immediately preceding
x (denoted p(x)) is H-toned in the output (�́o(p(x))), then �́o(x) evaluates to >; that is,
x is H-toned in the output. This implements the iterative nature of spreading. The final
line simply states that (non-final) H-tones are copied over faithfully from the input to the
output.

BMRSs maintain one of the main strengths of OT in implementing a ranking of constraint-
like predicates that identify particular structures in either the input or output. These struc-
tures may alternately license or block particular feature values in the output depending on
how they are fit into the overall BMRS template. For example, in (2), final(x) is a block-
ing structure for an output H tone, because it blocks it from surfacing on x. In contrast,
�́o(p(x)) is a licensing structure for an output H tone, because it causes it to surface on
x. Furthermore, the BMRS syntax arranges these structures into a hierarchy of local struc-
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tures that functions not unlike a constraint ranking in OT. For example, in (2), the blocking
structure final(x) supercedes the licensing structure �́o(p(x)), and thus any x that satisfies
both will not surface with a H tone.

In contrast to OT, however, the evaluation of a BMRS hierarchy is necessarily local in
nature, and therefore avoids the computational over-generation that has been attributed
to OT’s global evaluation strategy (Frank and Satta, 1998; Gerdemann and Hulden, 2012;
Lamont, 2018). In fact, BMRSs are guaranteed to describe a strict subclass of the regular
functions (Bhaskar et al., 2020).

Thus, through BMRSs, we have a computational characterization of a phonological gram-
mar that offers the following advantages. One, it captures both input and output-based map-
pings, because the output predicates can refer to either the input structure or the output
structure, or both. Two, it intensionally expresses phonologically significant generalizations
(as opposed to, e.g., automata). Three, it directly captures “do X unless Y”-type behavior
using the if...then...else syntax and interpretation. Four, it captures typological conspiracies
by implementing markedness constraints that can variably serve as licensing and blocking
structures. And five, it is connected to previous formal results on the computational com-
plexity and learnability of phonology.

The remainder of the paper is structured as follows. In §2 we situate BMRS analyses in
the context of a theory of phonology that captures the computational nature of phonology. In
§3 we explain in detail how BMRSs are defined and how they represent a phonological input-
output mapping. Then in §4 we apply BMRSs to analyses of three significant phonological
case studies that demonstrate the advantages of this formalism. These case studies include
the interaction of stress and length in Hixkaryana (§4.1), Elsewhere Condition effects (§4.2),
and the typology of *NC

˚
(§4.3). §5 then discusses a few potential questions and points of

interest raised by the analyses, before §6 concludes.

2 Motivation

We first take some time to detail and motivate the computational characterizations of phonol-
ogy that BMRS analyses are meant to capture. Readers already familiar with this work can
safely skip to §3.

From the perspective of typology, one goal of a generative theory of phonology is to
characterize possible phonological generalizations as opposed to impossible ones. The obser-
vation that phonological generalizations are regular (Johnson, 1972; Kaplan and Kay, 1994;
Heinz, 2018) delineates phonological generalizations from many logically possible ones, as
most computations are not regular (see, e.g., Immerman 1980). For example, consider a
hypothetical unbounded tone spreading pattern which instead spreads to the center-most
syllable of the word.

(3) /σ́σσσσσσ/ → [σ́σ́σ́σ́σσσ]

Any procedure that finds the center of a word requires an amount of memory proportional
to the length of the word, because it must keep track of the number of syllables in the
word. Because regular computations can only have a fixed memory, the statement that
phonology is regular thus explains why (3) is unattested. Incorporating the observation that
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phonology is regular into a generative theory of phonology thus provides for a restrictive
theory of phonological typology that characterizes precisely what kinds of processes should
be possible versus what kinds of processes should be impossible (Heinz, 2018).

Even more restrictive statements can be made. Heinz and Lai (2013) posit the hypothesis
that phonological processes are subsequential (Mohri, 1997). Subsequential processes are
those that are both regular and can be computed deterministically. That is, at any point in
reading the input, there is exactly one choice that can be made for the output. For example,
a deterministic finite-state transducer (FST) in Fig. 1 can compute the attested unbounded
high tone spreading pattern given in (1).

0#:∅ 1

3

σ:σ

σ́:∅
σ:σ́

#:∅ #:σ

Figure 1: A FST computing unbounded H-tone spread to the penult. States are represented
as circles, and transitions are represented as arrows with labels of the form “input:output.”

The FST in Fig. 1 operates on an underlying string of syllables as follows. It begins
in state 0 (states are depicted as circles), reading the beginning word boundary # and
outputting nothing (∅). From state 0, it reads in the next symbol in the input. If the next
symbol is a toneless syllable, it takes the transition labeled “σ:σ”, meaning that upon reading
a toneless syllable in the input (marked on the left of the colon), it outputs a toneless syllable
(marked on the right of the colon). Note that this transition loops on state 0, so this process
repeats for any number of toneless syllables. However, if an input H-toned syllable is read
from state 0, the transition labeled “σ́:∅” is taken to state 1. This means that the syllable
is first output as nothing (“σ:∅”), because the machine does not yet know if that syllable
is final (and thus should not receive a high tone). From state 1, any subsequent syllable
produces an output H-toned syllable. This represents assigning H to the preceding syllable,
which has now been determined to be nonfinal (and thus susceptible to spreading). Upon
seeing the word boundary, the machine outputs a single non-high syllable (‘#:σ’), which
realizes the final syllable as not H-toned.1

Importantly, the FST in Fig. 1 is deterministic: at any point in the input, there is
only one transition that can be taken. Deterministic FSTs are strictly less expressive than
nondeterminsitic ones (Mohri, 1997), essentially because they have a ‘bounded lookahead’.
That is, the determinism forces any change to a target in the input be made some fixed
number of steps after it has been seen.

Heinz and Lai (2013) point out that spreading in phonology operates in this way, and
that the subsequential hypothesis correctly distinguishes attested spreading processes from

1Note this FST would delete the H-tone from a monosyllabic form, under the assumption that final
syllables can’t bear a tone. However, that assumption isn’t necessary for the map to be deterministic.
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possible, yet unattested processes. Two examples they give are ‘sour grapes’ (Wilson, 2003,
2006) and ‘majority rules’ (Baković, 2000), both of which are generable in OT but which
require unbounded lookahead. This aligns with the independent characterization of spreading
as myopic (Wilson, 2003; Kimper, 2012). Empirically, this hypothesis has also been borne
out with studies of long-distance consonant harmony (Luo, 2017) and dissimilation (Payne,
2017). It is also connected to learnability, as subsequential functions are learnable from
positive data (Oncina et al., 1993; Jardine et al., 2014), but it is likely that the full regular
class is not (which follows from the fact, demonstrated by Gold (1967), that the regular
languages are not learnable). Exceptions to this hypothesis in tone (Jardine, 2016) and vowel
harmony (McCollum et al., 2017) have been noted, but the fact remains that a significant
amount of phonology is subsequential.

However, aside from typological concerns, another goal of a generative phonological the-
ory is to capture linguistically significant generalizations (Chomsky and Halle, 1968). A
theory that both incorporates computational characterizations and intensionally captures
linguistically significant generalizations has so far proved elusive. For example, the FST in
Fig. 1 extensionally captures unbounded spreading to the penult, and it makes explicit that
the pattern is regular (because the FST has a fixed memory, represented by the states) and
subsequential (by the determinism of the FST). However, it does not intensionally capture
the motivations for the pattern in the usual vocabulary of phonological analysis. For exam-
ple, the constraint on non-finality (Prince and Smolensky, 1993; Walker, 1996; Yip, 2002) is
not explicit anywhere in the formalism.

Furthermore, FSTs that assume alphabets of feature values when defining their transi-
tions (i.e., [+voice], [−son]) have not been widely pursued, in part because their most obvious
implementation would lose the property of determinism. As noted above, determinism re-
quires that there be exactly one possible transition from a given state for an input symbol,
and that restriction is lost when processing feature bundles (i.e., a /b/ could follow either
the [+voice] or the [−son] transition).

Logical descriptions, instead, can capture the same generalizations about the complexity
of phonological patterns (Rogers et al., 2013), and can do so with more realistic phonolog-
ical representations, such as features, syllable structure, or autosegmental representations
(Jardine, 2017a; Strother-Garcia et al., 2016; Strother-Garcia, 2017). However, previous
work applying logical descriptions to phonological processes have been defined entirely on
the input (Heinz, forthcoming), thereby missing generalizations about output-based con-
straints motivating processes. Furthermore, there has not been a logical characterization of
subsequential functions.

However, Bhaskar et al. (2020) present BMRSs as a logical description of the subse-
quential functions. We apply BMRSs to phonological analyses, and show that they can
intensionally capture phonological generalizations—using features, reference to the output,
and the interaction of constraints. At the same time, the advantages of automata—in par-
ticular that they make the computational properties of the processes they model clear and
that they come with proofs of formal learnability—are preserved with BMRSs.
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3 Boolean monadic recursive schemes

3.1 Basic structure

Recursive schemes are definitions of the output value of a segment based on a fixed set of
(unary) predicates that refer to the input and output structures local to that segment. We
illustrate with representations of words as strings of feature bundles, but this easily extends
to other structures—for instance, we will momentarily describe a tonal process with syllables
and tone values. (We leave detailed investigation of the consequences of varying structure
to future work.)

As BMRSs are rather intuitive, readers who are satisfied by the example given in the
introduction may skip ahead to Section 4 to see how BMRSs can be applied to more com-
plicated phonological analyses. The purpose of this section is to define BMRSs from the
ground up. It serves both as a reference and to show that BMRSs are a precise, well-defined
system.

3.1.1 Input feature predicates

The primitives of BMRSs are the boolean values > (true) and ⊥ (false) and a finite set of
monadic predicates P (t) that take a single argument t and return > or ⊥. We can apply
this to strings of feature bundles as follows.

For a set F = {[(±)F], [(±)G], ..., [(±)Z]} of valued features and a boundary symbol #,
we use a set I = {[F](t), [G](t), ..., [Z](t),#(t)} of input feature predicates as well as a special
set of output feature predicates O = {[F]o(t), [G]o(t), ..., [Z]o(t),#o(t)}; the latter marked
with subscript o.

The argument t stands for some term which ranges over the elements in a word—in our
case, the segments and boundaries #. Terms are defined inductively as follows: the variable
x is a term, and if t is a term, then p(t) is a term referring to the predecessor of t, and s(t)
is a term referring to the successor of t.

We first focus on explaining the input feature predicates, using the word model in Fig.
2 as an example. Fig. 2 represents the word [tEd] with each feature bundle indicated with
its usual IPA value and the predecessor and successor of each segment explicitly marked
with arrows. The distinct elements in the representation—the three segments and the word
boundaries—are numbered with indices.

#

1

t

2

E

3

d

4

#

5

s s s s

p p p p

Figure 2: An example model of the word /tEd/

Table 1 gives some example input predicates, given a standard set of features, taking
various terms as arguments. They are listed with their truth values for each element in Fig.
2.
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# t E d #
1 2 3 4 5

[son](x) ⊥ ⊥ > ⊥ ⊥
[voi](x) ⊥ ⊥ > > ⊥
#(x) > ⊥ ⊥ ⊥ >
#(s(x)) ⊥ ⊥ ⊥ > ⊥
[cor](p(p(x))) ⊥ ⊥ ⊥ > ⊥

Table 1: The values of some input predicates given the segments in Fig. 2

For example, [son](x) is true when x is interpreted the [+son] element 3 in Fig. 2; i.e.
the sole vowel [E]. The predicate evaluates to false for all other segments. Similarly, [voi](x)
is true only for 3 and 4, and #(x) is true only for 1 and 5.

Note that the feature predicates are interpreted as follows: [F](t) is true for a position
t when t is [+F] in the input, and false when t is [−F] in the input. Clearly, this equates
the plus and minus values of a feature to the boolean values of true and false. We do this
because in a binary feature system, it is redundant to have separate predicates [+F](t) and
[−F](t) (as the former is true if and only if the latter is false). This cannot, of course, deal
with unspecified feature values. To keep the exposition focused on the logic of BMRSs, we
maintain this simplification throughout the paper, but revisit an implementation of three
(or more)-valued feature systems in the discussion section.

The last two rows show predicates whose arguments refer to successors and predecessors.
We can read #(s(x)) as “the successor of x is #”; thus, this is true only when x is evaluated to
4. Likewise, [cor](p(p(x))) can be read “the predecessor of the predecessor of x is coronal”—
in other words, the segment two elements preceding x is coronal. In Fig. 2, this is only true
for 4.2

3.1.2 Logical control and defining local structures

The logical backbone of BMRSs are expressions built out of these basic predicates and an
if...then...else structure as defined inductively below.

(4) a. > and ⊥ are expressions;
b. any predicate P (t) is an expression;
c. if E1, E2, and E3, are expressions, then

if E1 then E2 else E3

is an expression.

An expression E of the form “if E1 then E2 else E3” returns a value as follows. First
E1 is evaluated; if it is true, then E returns the result of evaluating E2. If E1 is false,

2Note that for the initial element p(x) is undefined (e.g., there is no predecessor of 1 in Fig. 2) and
likewise for the final element s(x) is undefined (e.g. there is no successor of 5 in Fig. 2). We adopt the
convention that P (t) evaluates to ⊥ (false) whenever t is undefined.
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then E returns the result of evaluating E3. The left-hand side of Fig. 3 gives a schematic
representation of this evaluation. Note that BMRS conditionals evaluate like “if...then”
statements in programming languages, not like logical implication. That is, E1 does not
directly contribute to the output of E. This is in contrast to a logical implication such as
“if E1 then E2,” in which the value of the entire statement is understood to be true if E1 is
false.

E1

E2 E3

> ⊥
[son](x)

⊥ [voi](x)

> ⊥

Figure 3: Evaluation of if ... then ... else statements (left), with (5) an example (right).

To illustrate, the below expression defines what it means to be a voiced obstruent.

(5)

[
−son
+voi

]
(x) = if [son](x) then ⊥ else [voi](x)

As shown in the right-hand side of Fig. 3,

[
−son
+voi

]
(x) first checks if x is [son] (= E1). If

[son] returns >, then ⊥ (= E2) is returned—this implements the logic that if a segment is a
sonorant, then it cannot be a voiced obstruent. If [son] returns ⊥, then the value of [voi](x)
(= E3) is returned. Thus if [voi](x) is true, then we know that x is both voiced and an

obstruent. Thus,

[
−son
+voi

]
(x) returns > if and only if x is a voiced obstruent. The reader

can confirm via Table 2 that this is true for the segments in the example word from Fig. 2.

# t E d #
1 2 3 4 5

E1 [son](x) ⊥ ⊥ > ⊥ ⊥
E2 ⊥ ⊥
E3 [voi](x) ⊥ ⊥ > ⊥[
−son
+voi

]
(x) ⊥ ⊥ ⊥ > ⊥

Table 2: Evaluation of (5) given the segments in Fig. 2. A cell in a column for a segment is
filled only if the predicate on the right is evaluated for that segment.

Before moving on, it is important to note that (5) names an expression with the shorthand

predicate

[
−son
+voi

]
(x). In this way, we can derive new predicates that are not in the original
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set of primitive predicates that we started with. However, because the right-hand side of the

equation is a BMRS expression,

[
−son
+voi

]
(x) is also a BMRS expression. In other words,

we have defined nothing new. This is important because we know that we have not extended
the computational power of BMRSs—we have simply defined a ‘shorthand’ that allows us
to easily refer to natural classes.

We will now show how we can derive local structures around x—that is, we can derive new
predicates that refer not only to the properties of x but also to the properties of elements
within a fixed distance of x. This allows us to define predicates that perform a function
similar to structural descriptions in SPE rules or markedness constraints in OT.

For example, the following expression

[
−son
+voi

]
#(x) identifies word-final voiced obstru-

ents.3

(6)

[
−son
+voi

]
#(x) = if

[
−son
+voi

]
(x) then #(s(x)) else ⊥

This expression is evaluated similar to the definition for

[
−son
+voi

]
(x) in (5). Here,

[
−son
+voi

]
(x)

itself is used as the initial conditional E1. If it is false, then ⊥ is returned. If it is true, then
the value for #(s(x)) is returned. Recall that #(s(x)) returns > if and only if the successor

of x is the word boundary; in other words, if x is word final. Thus,

[
−son
+voi

]
#(x) returns >

if and only if x is both a voiced obstruent and word-final. Examples of how this expression
is evaluated are given in Table 3.

# b æ d #
1 2 3 4 5

E1

[
−son
+voi

]
(x) ⊥ > ⊥ > ⊥

E2 #(s(x)) ⊥ >
E3 ⊥ ⊥ ⊥ ⊥[
−son
+voi

]
#(x) ⊥ ⊥ ⊥ > ⊥

Table 3: Evaluation of (6) given the segments in the word /bæd/. A cell in a column for a
segment is filled only if the predicate on the right is evaluated for that segment.

Thus, the expression

[
−son
+voi

]
#(x) defined in (6) identifies a local structure—that of a

word-final voiced obstruent—and has been so named. Note that in the name of the expression[
−son
+voi

]
has been underlined to indicate x’s position in the structure. This notation will be

3Equivalently, we could use the standard logical conjunction (i.e.,[-son,+voice](x) ∧ #(s(x)). However,
for the sake of consistency, we will use the if ... then ... else ... syntax for all definitions in the paper.
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used throughout the paper. The following section shows how BMRSs can be used to define a
map from underlying forms to surface forms by defining output feature predicates that refer
to the input feature predicates defined in this section.

3.1.3 Defining output feature predicates

Predicate logics can define maps by defining the output in terms of the input (Courcelle,
1994; Engelfriet and Hoogeboom, 2001).4 This means that we can define a phonological map
using featural representations through a BMRS definition that specifies the featural content
of each output element. These definitions describe exactly when an input segment will have
that feature in the output.

For example, consider the following word-final obstruent devoicing rule.

(7) [−son] → [−voice] / #

Clearly, the crux of describing this rule is determining when a segment surfaces as [+voice]
and when a segment surfaces as [−voice]. We can do this with the following BMRS definition
of the output feature predicate [voi]o(x) (8).

(8) [voi]o(x) = if

[
−son
+voi

]
#(x) then ⊥ else [voi](x)

This states: the value of [voi]o(x) for x is false—that is, x is [−voi] in the output—if it is
a word-final voiced obstruent. Otherwise, [voi]o(x) takes the value x has for [voi](x) in the
input—that is, it is output faithfully. In other words, as long as it is not a word-final voiced
obstruent, x surfaces as [+voi] if it was [+voi] in the input and [−voi] if it was [−voi] in the
input. This is illustrated in Table 4.

The output values for other features, such as [±sonorant], [coronal], [labial], etc., do not
change—and so we define the output feature predicates for these features to be faithful to
their inputs. Thus, we have something like in (9).

(9) [son]o(x) = [son](x)
[cor]o(x) = [cor](x)
[lab]o(x) = [lab](x)

Assuming, as a toy example, that this is an exhaustive set of features for our representations
([±voi],[±son],[cor],[lab]), then we have defined all we need to determine the output for any
input segment.

More generally, a full BMRS definition of a map for featural representations is as follows:

(10) Given an input set of valued features F = {[(±)F], [(±)G], ..., [(±)Z]}, a BMRS

4For those familiar with the concept this is an extension of the well-studied notion of logical interpretations
(as defined in, e.g., Enderton, 1972).
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# b æ d #
1 2 3 4 5[

−son
+voi

]
#(x) ⊥ ⊥ ⊥ > ⊥

⊥ >
[voi](x) ⊥ > > ⊥

[voi]o(x) ⊥ > > ⊥ ⊥

# b æ d #
1′ 2′ 3′ 4′ 5′

[voi] − + + − −

Table 4: Evaluation of the output predicate definitions in (8) for devoicing given the input
/bæd/. The bottom table shows the value for [±voi] for each output segment i′ corresponding
to input segment i.

definition of a map is a list of definitions

out(x) = E0

[F]o(x) = E1

[G]o(x) = E2

. . .
[Z]o(x) = En

where each Ei is a BMRS expression and out(x) is a special output predicate that
determines whether x has a corresponding output segment (i.e., whether or not it is
deleted).

Thus, (11) is a BMRS definition of word-final obstruent devoicing. We assume for now that
word boundaries are not included in the output. Fig. 4 shows how these predicates evaluate
for each segment in the example input /bæd/, producing the correct output [bæt].

(11) out(x) = if #(x) then ⊥ else >

[voi]o(x) = if

[
−son
+voi

]
#(x) then ⊥ else [voi](x)

[son]o(x) = [son](x)
[cor]o(x) = [cor](x)
[lab]o(x) = [lab](x)

As none of the analyses to follow in Sec. 4 include epenthesis, we abstract away from how to
implement this. However, there are established ways of doing this in logical transductions,
by specifying copies of input elements. We refer interested readers to, e.g., Strother-Garcia
(2017) for examples.
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# b æ d #
1 2 3 4 5

out(x) ⊥ > > > ⊥
[voi]o(x) ⊥ > > > ⊥
[son]o(x) ⊥ ⊥ > ⊥ ⊥
[cor]o(x) ⊥ ⊥ ⊥ > ⊥
[lab]o(x) ⊥ > ⊥ ⊥ ⊥

1′ 2′ 3′ 4′ 5′

b æ t

Figure 4: Evaluation of the BMRS definition for word-final obstruent devoicing in (11) for
the example input /bæd/.

3.2 Licensing and blocking

In the definition for [voi]o(x) in (7), the predicate

[
−son
+voi

]
#(x) acts as a markedness con-

straint: if x is in this position in this structure, then [voi]o(x) evaluates to false. Likewise,
[voi](x) is a faithfulness constraint—it states that x’s input value for [±voi] should be re-
produced faithfully in the output. Like a faithfulness constraint, it can be violated—exactly

in case when x satisfies

[
−son
+voi

]
#(x), which takes precedence over [voi] in the conditional

structure of the definition.
This illustrates how the general structure of BMRSs defines the output in terms of

structure-based conditions that may be violated. In general, the output property A′(x)
is defined as a BMRS expression with the structure in (12).

(12) A′(x) = if STRUCT1(x) then {>,⊥} else
if STRUCT2(x) then {>,⊥} else
. . .
if STRUCTn(x) then {>,⊥} else
A(x)

Where STRUCTi for any line of the form if STRUCTi(x) then > is a licensing structure,
because if it evaluates to > it causes A′(x) to true in the output. Likewise, for any line of
the form if STRUCTi(x) then ⊥, the structure STRUCTi is a blocking structure, because
if it evaluates to > it causes A′(x) to be false in the output.

Importantly, the entire definition of A′(x) is an ordering of licensing structures and
blocking structures. This is depicted graphically in Fig. 5. If STRUCTi appears before
STRUCTj in the definition, then STRUCTi takes priority over STRUCTj. In other words,
the licensing and/or banning condition expressed by STRUCTj(x) can be violated if and
only if some STRUCTi earlier in the order has been satisfied. The analyses that follow in
this paper give concrete examples of this logic of computation of the output.
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STRUC1(x)

{>,⊥} STRUC2(x)

{>,⊥} . . .

STRUCn(x)

{>,⊥} A(x)

> ⊥

> ⊥

⊥

> ⊥

Figure 5: Ordering of structures in a BMRS definition of an output property A′(x).

3.3 Recursion and output structures

From the discussion so far the boolean part of BMRSs should be clear.5 But the true power
of BMRSs lies in their potential for recursive predicate definitions. This means that when
defining output predicates we can refer to other output predicates, including the one we
are currently defining. In the context of a phonological analysis, this means that BMRS
definitions of maps can refer to local output structures as well.

To illustrate, consider unbounded spreading, as in high (H) tone spreading in Shambaa
(Odden, 1982). In Shambaa, an underlying H tone spreads to the right, until reaching the
penult.

(13) Shambaa (Odden, 1982)
a. /ku-hand-a/ [ku-hand-a] ‘to plant’
b. /ku-fúmbatiS-a/ [ku-fúmbát́ıS-a] ‘to tie securely’
c. /ku-fúmbatiS-ij-an-a/ [ku-fúmbát́ıS-́ıj-án-a] ‘to tie securely for each other’

We can schematize this spreading using the following rule. For expository purposes we
shall describe this map in terms of strings of syllables (which we arbitrarily choose as the
tone-bearing unit) instead of autosegmental representations.

(14) a. σ→ σ́/ σ́ σ(iterative)
b. /σσ́σσσ/ → σσ́σ́σσ→ σσ́σ́σ́σ→ [σσ́σ́σ́σ]

The rule in (14a) states that a nonfinal syllable takes an H tone when following another
H-toned syllable, and that this process applies iteratively. Thus, the rule applies repeatedly
until it no longer can, as illustrated in (14b).

We can capture this map using recursion in a BMRS definition as follows. We use the

5The monadic part comes from the limitation to a single variable in each term.
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input predicates �́ to represent the privative property of having a high tone and σ to indicate
being a syllable.6 The truth values of each of these predicates for the input /σσ́σσσ/ is given
in Fig. 6.

# σ σ́ σ σ σ #
1 2 3 4 5 6 7

#(x) > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
σ(x) ⊥ > > > > > ⊥
�́(x) ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥

Figure 6: Values for the input predicates #(x), σ(x), and �́(x) for the input /σσ́σσσ/.

As finality is clearly important to this generalization, we first define a predicate final(x)
that identifies a word final syllable.

(15) final(x) = if #(s(x)) then > else ⊥

With our input predicates established, we can define unbounded tone spread with the BMRS
definition below that defines the output versions of σ(x) and �́(x).

(16) a. σo(x) = σ(x)

b. �́o(x) = if final(x) then ⊥ else

if �́o(p(x)) then > else

�́(x)

The definition of σo(x) states that syllables are all mapped faithfully to the output,
and the definition of �́o(x) states three conditions that govern whether or not a syllable
is high-toned in the output. The first is that, if a syllable is final, then it cannot be high
(if final(x) then ⊥). The second states that if the preceding syllable is high in the output,
then x is high (if �́o(p(x)) then ⊥). The final line states that any underlying high-toned
syllable is mapped faithfully with a high tone.

In the second condition of (16) we see the output predicate �́o(x) is used in its own
definition, to state that an x is high in the output if its predecessor is. This is evaluated as
shown in Tab. 5.

The top three lines of Tab. 5 give the truth values for these three conditions. For example,
element 2, the first syllable, satisfies none of these conditions: it is not final (final(x) evaluates
to ⊥); its predecessor is not high in the output (�́o(p(x)) evaluates to ⊥—see Fn. 2); and
it itself is not high in the input (�́(x) evaluates to false). Thus �́o(x) evaluates to ⊥ for 2.
When evaluating element 3, then we know that �́o(p(x)) evaluates to ⊥, because �́o(x) is
⊥ for element 2.7 However, because 3 is itself high in the input, and thus satisfies �́(x), it
does satisfy �́o(x).

6We use �́ instead of σ́ as the latter implies a binary contrast with non-high σ.
7This exposition implies the string is evaluated left-to-right, but it is also possible to evaluate the string

right-to-left, by recursively computing the value of �́o(s(x)) each time it is encountered.
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# σ σ́ σ σ σ #
1 2 3 4 5 6 7

final(x) ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥
�́o(p(x)) ⊥ ⊥ ⊥ > > ⊥
�́(x) ⊥ ⊥ > ⊥

�́o(x) ⊥ ⊥ > > > ⊥ ⊥
σo(x) ⊥ > > > > > ⊥
Output σ σ́ σ́ σ́ σ

Table 5: Evaluation of (16) given an input /σσ́σσσ/. A cell in a column for a segment is
filled only if the predicate on the right is evaluated for that segment.

Because �́o(p(x)) is a licensing structure for �́o then �́o(x) is also true for 4. Likewise,
because �́o(p(x)) is true for 5, then �́o(x) is true for 5 as well. This implements the iterativity
of the rule: the output value of the preceding segment affects the output of a subsequent
segment.

Note that �́o(p(x)) is also true for element 6. However, crucially, final(x) is also true
for 6, and final(x) is a blocking structure for �́o. Because this blocking structure outranks
(i.e., takes priority over) the licensing structure �́o(p(x)), �́o(x) evaluates to ⊥ for element
6. This captures the generalization that non-finality is a crucial condition for the high tone
spreading.

Because we allow output predicates in their own definitions, it is possible to write BMRS
definitions that are circular; i.e. non-terminating. An example is given in §4.3 below. It is
possible to define exactly the conditions under which this circularity can occur, but that is
beyond the scope of this paper (see discussion in Bhaskar et al. 2020). For present purposes,
we consider such circular grammars to be non-interpretable and therefore excluded from the
typology of possible grammars.

This brief demonstration has shown how BMRSs use recursion to refer to output struc-
tures. It has also illustrated how BMRSs capture linguistically significant generalizations
through the ranking of licensing and blocking structures. Both of these aspects of BMRSs
will be more thoroughly illustrated in the analyses to follow in §4.

3.4 Expressive power

While recursion is a potentially powerful tool, BMRSs are also restricted in their expressiv-
ity, as has been noted. Recursive schemes are a useful way of studying algorithms abstractly
because their behavior is well understood (Moschovakis, 2019). In particular, Bhaskar et al.
(2020) prove that, as long as the recursion goes in one direction—that is, the definitions
embed multiple p’s or s’s but never combine them —BMRSs describe exactly the subsequen-
tial functions. Thus, for example, a structure we cannot define is a predicate like center(x)
identifying the center syllable in a word, because this would require looking in both direc-
tions to identify the distance from the word edges. Thus, BMRSs cannot describe unattested
patterns like the “spread to center” pattern mentioned in (3).
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We briefly explain why this is the case. Roughly, the recursively-defined monadic predi-
cates correspond to states in a FST. The determinism comes from the bounded lookahead:
if we only recurse over, for example, p, the transduction can only “look” backwards an un-
bounded amount. This corresponds to the notion of bounded lookahead which was described
in §2 as crucial to being described by a deterministic FST. The analyses in the following
sections all have this property.

4 Analyses

In this section we provide BMRS analyses of three phonological phenomena. These three case
studies were chosen to showcase the ability of BMRSs to capture the nature of phonology in
three particular areas. The analysis of Hixkaryana stress in §4.1 shows how the hierarchy of
licensing and blocking structures in a BMRS analysis captures the conflicting pressures that
give rise to phonological patterns. In §4.2, an analysis of English stress shows how Elsewhere
Condition effects are derived from the manner in which BMRS are evaluated. Finally, the
typology of NC

˚
effects in §4.3 shows how varying whether a marked sequence appears as a

blocking or licensing structure captures the different repairs languages choose to avoid that
marked sequence.

4.1 Stress and length in Hixkaryana

Stress in Hixkaryana (Derbyshire, 1985) is predictable, and Kager (1999)’s analysis of the
interaction between stress and weight in Hixkaryana is a well-known argument for OT’s
ability to capture the interaction of conflicting generalizations in a language. Here we give
a BMRS analysis that not only captures these same conflicts, but also addresses some of
Halle and Idsardi (2000)’s criticisms of Kager (1999)’s analysis. The following are taken
from Kager (1999)’s discussion of the data.

In strings of open syllables, Hixkaryana stress has an iterative, iambic pattern, with long
vowels in the stressed syllables. As in Kager (1999), we put aside the distinction between
primary and secondary stress.

(17) a. [to.ró:.no] ‘small bird’
b. [ne.mó:.ko.tó:.no] ‘it fell’
c. [a.tSó:.wo.wo] ‘wind’
d. [kwá:.ja] ‘red and green macaw’

Furthermore, as illustrated in (17c) [a.tSó:.wo.wo] ‘wind’, Hixkaryana has a nonfinality
condition that prevents this iteration from reaching the end of the word (c.f. *[a.tSó:.wo.wó:]).
In bisyllabic words such as (17d) [kwá:.ja] ‘red and green macaw’, this forces the initial
syllable to be stressed (c.f. *[kwa.já:]).

Because stress and length in open syllables are entirely predictable, neither need be
present in the underlying forms. Using a schematic representation of L for light syllables
and H for heavy syllables, we can represent this map as in (18). Like Kager, this schematic
abstracts away from the portion of the grammar that implements syllabification, and takes
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syllables as the input.8

(18) a. LLL 7→ [LH́L] (=(17a))

b. LLLLL 7→ [LH́LH́L] (=(17b))

c. LLLL 7→ [LH́LL] (=(17c))

d. LL 7→ [H́L] (=(17d))

Additionally, Hixkaryana allows closed syllables, which are also treated as heavy and
receive stress.

(19) a. [ák.ma.tá:.ri] ‘branch’
b. [tóh.ku.rjé:.ho.na] ‘to Tohkurye’
c. [nák.ñóh.játS.ke.ná:.no] ‘they were burning it’
d. [kha.ná:.ńıh.no] ‘I taught you’
e. [mi.há:.na.ńıh.no] ‘you taught him’

As (19a) [ák.ma.tá:.ri] ‘branch’ shows, for example, iterative stress over light syllables
resets following a heavy syllable. In terms of our schematic notation, we can represent these
examples as below.

(20) a. HLLL 7→ [H́LH́L] (=(19a))

b. HLLLL 7→ [H́LH́LL] (=(19b))

c. HHHLLL 7→ [H́H́H́LH́L] (=(19c))

d. LLHL 7→ [LH́H́L] (=(19d))

e. LLLHL 7→ [LH́LH́L] (=(19e))

A BMRS analysis of the Hixkaryana facts defines when a syllable is heavy in the output
(Ho(x)), when it is light in the output (Lo(x)), and when it is stressed in the output (�́o(x)),
given the input predicates L(x) and H(x). The following will capture this with iteration
governed by the notions of clash and lapse (Prince, 1983; Selkirk, 1984; Gordon, 2002).

The following define what a syllable is (essentially, any H or L)9 and when a syllable x
will be, respectively, in a clash and lapse situation.

(21) a. σ(x) = if L(x) then > else H(x)

b. clash(x) = if σ(x) then �́o(p(x)) else ⊥
c. lapse(x) = if �́o(p(x)) then ⊥ else

if σ(p(x)) then σ(x) else ⊥

The predicate clash(x) defines a structure in which x is preceded by a stressed syllable in
the output. Note that this is defined recursively, using the output predicate �́o(x). The
predicate lapse(x) is defined essentially as the opposite situation—x is in a lapse structure
exactly when it is a syllable preceded by another syllable but not in a clash structure.

8This is a safe move because we can assume that the functions L(x) and H(x) identifying light and
heavy syllables have been defined elsewhere in the grammar; for more on composing BMRSs into a complete
grammar see §5.

9This is needed to distinguish syllables from word boundaries.
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We also make use of a predicate only(x), which identifies the first syllable of mono- and
di-syllabic words, as these syllables are always stressed:

(22) only(x) = if final(x) then initial(x) else
if final(s(x)) then initial(x) else
⊥

The full definition is given in (23). The basic iterative pattern of stress is given by the final
three lines, which show the critical role played by the clash and lapse structures.

(23) �́o(x) = if only(x) then > else

if final(x) then ⊥ else

if H(x) then > else

if initial(x) then ⊥ else

if clash(x) then ⊥ else

lapse(x)

Setting clash(x) as a blocking structure, and lapse as a licensing structure, captures
exactly left-to-right binary stress. Setting initial(x) as a blocking structure makes the iter-
ation iambic. This is illustrated with the derivation in Tab. 6 for an input LLLLL (=(17b)
[ne.mó:.ko.tó:.no] ‘it fell’). As with the derivations in the previous section, in 6 and in the
derivations throughout this section, a cell in a column for an element is filled only if the
predicate on the right is evaluated for that segment.

# L L L L L #
1 2 3 4 5 6 7

initial(x) ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ ⊥ > ⊥ > ⊥
lapse(x) ⊥ > > ⊥

�́o(x) ⊥ ⊥ > ⊥ > ⊥ ⊥

Table 6: Evaluation of (23) given the input /LLLLL/

As shown in Tab. 6, element 2 in the representation—that is, the first L in LLLLL—
satisfies initial(x). This is a blocking structure in the definition of �́o(x), and so 2 evaluates
to ⊥ for the entire expression. An initial L thus will not receive stress in the output.

Next, we can evaluate 3, the second L syllable. Element 3 is not initial, so the evaluation
moves on to the next line. This evaluates clash(x), which again is true if and only if �́o(p(x))
is true. As we know already that element 2 evaluates to ⊥, so clash(x) evaluates to ⊥ for
element 3. Conversely, because element 2 evaluates to ⊥ for �́o(x), lapse(x) evaluates to
> for 3. As lapse(x) is a licensing structure for �́o(x), �́o(x) evaluates to > for 3. Thus,
element 3 will be stressed in the output. In turn, this means that the blocking structure
clash(x) evaluates to > for 4, so �́o(x) evaluates to false for 4. This in turn means that the
licensing structure lapse(x) evaluates to > for 5, and so it evaluates to > for �́o(x), and so
on.
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We now turn to the preceding two lines in the definition in (23) of �́o(x), which are
repeated below in (24).

(24) if final(x) then ⊥ else

if H(x) then > else

As with the unbounded spreading example in §3.3, non-finality is implemented by setting
final(x) as a blocking structure. Likewise, setting H(x) as a licensing structure implements
the weight-to-stress principle (Kager, 1999, 2007).

Crucially, both of these statements take precedence over the structures responsible for
iterative stress. This means that both of them will interrupt the normal iterative placement
of stress. This is illustrated in Tab. 7 for an input LLLL (=(17c) [a.tSó:.wo.wo] ‘wind’).

# L L L L #
1 2 3 4 5 6

final(x) ⊥ ⊥ ⊥ ⊥ > ⊥
H(x) ⊥ ⊥ ⊥ ⊥ ⊥
initial(x) ⊥ > ⊥ ⊥ ⊥
clash(x) ⊥ ⊥ > ⊥
lapse(x) ⊥ > ⊥

�́o(x) ⊥ ⊥ > ⊥ ⊥ ⊥

Table 7: Evaluation of (23) for the input /LLLL/

First, the output of LLLL is [LH́LL], not *[LH́LH́] because stress avoids the final syllable.
This is accomplished by ranking final(x) as a blocking structure above the licensing structures
H(x) and lapse(x). Thus, the final L in LLLL (element 5), would satisfy the licensing
structure lapse(x) (note that its predecessor evaluates to ⊥), but it first satisfies final(x).
This means that �́o(x) immediately evaluates to ⊥, leaving lapse(x) not evaluated. Thus,
any final L will not be assigned stress.

Conversely, any H syllable must receive stress. By ordering H(x) as a licensing structure
above the blocking structures initial(x) and clash(x), this assigns stress to Hs that are in
either of these positions. This is illustrated below in (25a) for an input HLLLL (=(19b)
[tóh.ku.rjé:.ho.na] ‘to Tohkurye’) and in (25b) for HHHLL (=(19c) [nák.ñóh.játS.ke.ná:.no]
‘they were burning it’).
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(25) a.
# H L L L L #
1 2 3 4 5 6 7

final(x) ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥
H(x) ⊥ > ⊥ ⊥ ⊥ ⊥
initial(x) ⊥ ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ > ⊥ > ⊥
lapse(x) ⊥ > ⊥

�́o(x) ⊥ > ⊥ > ⊥ ⊥ ⊥

b.
# H H H L L L #
1 2 3 4 5 6 7 8

final(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥
H(x) ⊥ > > > ⊥ ⊥ ⊥
initial(x) ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ > ⊥ ⊥
lapse(x) ⊥ > ⊥

�́o(x) ⊥ > > > ⊥ > ⊥ ⊥

In (25a), the initial H (element 2) satisfies the licensing structure H(x) and thus �́o(x)
evaluates to >. This is despite the fact that H is initial and would otherwise satisfy the
blocking structure initial(x). Thus, ranking H(x) over intial(x) allows initial Hs to receive
stress. Likewise, ranking H(x) over clash(x) captures the generalization that assigning stress
to heavy syllables outweighs the drive for placing stress on alternate syllables. Thus, the
first three Hs in (25b) evaluate to > for �́o(x), even though they would satisfy the blocking
structure clash(x).

The analysis in (23) captures stress assignment for all forms of three syllables or more.
But as exemplified in (17d) [kwá:.ja] ‘red and green macaw,’ shorter words do not follow the
above generalizations. Instead, in mono- and di-syllables the first syllable is stressed.

As shown in Tab. 8, for an input LL, setting only(x) as a licensing structure and ordering
it before the blocking structures final(x) and initial(x) correctly assigns stress to the initial
syllable. (The remaining parts of the definition of �́o(x) are omitted.)

# L L #
1 2 3 4

only(x) ⊥ > ⊥ ⊥
final(x) ⊥ > ⊥
H(x) ⊥ ⊥
initial(x) ⊥ ⊥

�́o(x) ⊥ > ⊥ ⊥

Table 8: Evaluation of relevant statements in (23) for input /LL/

With stress captured, the definitions for the output weight of syllables is simple.

(26) a. Ho(x) = if �́o(x) then > else

H(x)

b. Lo(x) = if �́o(x) then ⊥ else

L(x)

Definition (26a) for Ho(x) implements the stress-to-weight principle: any syllable that
receives stress becomes heavy. This captures the (near) equivalence of weight and stress. As
a default any input heavy syllable also becomes heavy in the output (this only applies to
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final H syllables that did not receive stress). Definition (26b) is the converse: any syllable
that does not receive stress in the input, and was L in the input, surfaces as L.

How (23) and (26) work together to produce the correct outputs for the inputs LLHL
(=(19d) [kha.ná:.ńıh.no] ‘I taught you’) and HHHLLL (=(19c) [nák.ñóh.játS.ke.ná:.no] ‘they
were burning it’) are shown in the full derivations in Tab. 9. The individual lines of the
definition of �́o(x) are given for clarity.

# L L H L #
1 2 3 4 5 6

only(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
final(x) ⊥ ⊥ ⊥ ⊥ > ⊥
H(x) ⊥ ⊥ ⊥ > ⊥
initial(x) ⊥ > ⊥ ⊥
clash(x) ⊥ ⊥ ⊥
lapse(x) ⊥ > ⊥

�́o(x) ⊥ ⊥ > > ⊥ ⊥

Ho(x) ⊥ ⊥ > > ⊥ ⊥

Lo(x) ⊥ > ⊥ ⊥ > ⊥
Output L H́ H́ L

# H H H L L L #
1 2 3 4 5 6 7 8

only(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
final(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥
H(x) ⊥ > > > ⊥ ⊥ ⊥
initial(x) ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ > ⊥ ⊥
lapse(x) ⊥ > ⊥

�́o(x) ⊥ > > > ⊥ > ⊥ ⊥

Ho(x) ⊥ > > > ⊥ > ⊥ ⊥

Lo(x) ⊥ ⊥ ⊥ ⊥ > ⊥ > ⊥
Output H́ H́ H́ L H́ L

Table 9: Evaluation of (23) and (26) for inputs /LLHL/ and /HHHLLL/

This concludes our BMRS analysis of stress and length in Hixkaryana, which clearly il-
lustrates the ability of BMRSs to state conflicting pressures in the language: overall there
is an iterative left-to-right stress-building process, but this is overridden by existing heavy
syllables. This is captured in the BMRS analysis by ordering the licensing and blocking
structures responsible for iterative stress below the licensing structure responsible for assign-
ing stress to heavy syllables. It also captures the relationship between stress and weight by
literally equating output heavy syllables with accented syllables.

It is worth making a few remarks comparing this analysis to previous analyses. It is
similar to Hayes (1995)’s analysis, in that it builds iterative stress and then assigns weight
based on this stress. However, it is distinct from a derivational procedure in that conflicting
licensing and blocking structures are primitives of the system that defines stress. For exam-
ple, instead of marking final syllables as extrametrical, the BMRS analysis ranks a blocking
structure final(x) above the licensing structures (except for only(x)) responsible for the usual
assignment of stress.

This latter aspect of the BMRS analysis is somewhat like an OT analysis, in that it
implements stress assignment based on a series of ranked structures reminiscent of constraints
(e.g., non-finality, clash, lapse). However, the evaluation of these structures given a particular
input is fundamentally local, as opposed to OT’s global evaluation. This is perhaps clearest
in the example of an input LLHL, which, as Halle and Idsardi (2000) point out, is incorrectly
output under Kager (1999)’s analysis as *[LLH́L] (as opposed to the attested [LH́H́L], e.g.
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(19d) [kha.ná:.ńıh.no] ‘I taught you’). This is due to the fact that, in OT, *[LLH́L] is directly
compared to [LH́H́L], and the former turns out to be more optimal than the latter given
Kager (1999)’s high ranking of Uneven-Iamb, which penalizes iambs of the form (LĹ) and (H́).
The BMRS analysis obtains the correct output [LH́H́L] by assigning stress exactly as Halle
and Idsardi (2000) describe the generalization in Hixkaryana: iterating from left-to-right
“instead of ‘looking ahead’ to skip a single light syllable in order to form a single canonical
iamb” (p. 202). The way the statements in a BMRS analysis are evaluated crucially limits
its ability to look ahead.

This leads to another, related point: one cannot verify the accuracy of an OT analysis
until one is absolutely sure they have considered all possible output candidates (Bane and
Riggle, 2010). In a BMRS analysis, it is easier to check this because each part of the grammar
is defined explicitly, and so there is a step-by-step procedure for determining the output for
any input. This also relates to a theme of Halle and Idsardi (2000)’s critique of Kager (1999):
given a ranking of OT constraints with multiple strata, it is hard to understand what part
of the grammar carries which part of the explanatory power. With a BMRS analysis, it is
clear exactly how each licensing and blocking structure contributes to the overall map.

Another point of divergence between the analysis presented here and those of Hayes
(1995) and Kager (1999) is that, like Gordon (2002), this analysis does not explicitly refer to
feet. This is not to refute feet as a psychologically real part of the grammar, but rather was
an expository choice to focus on how BMRSs function, instead of how they can be extended
to build structures. Logical characterizations can also capture structure building; see, for
example the work of Strother-Garcia (2019) and Jardine (2017b). However, the simplicity
of the foot-free analysis is striking. It is worth noting that feet are a crucial part of Kager
(1999)’s analysis, which claims to explain lengthening of open syllables through a universal
principle of (LH́) as the ideal iambic foot. However, this claim does not hold up under Halle
and Idsardi (2000)’s detailed analysis of the behavior of Kager’s constraints. They show that
a preference for (LH́) iambs cannot be encapsulated in a single OT constraint, and instead
can only be captured with a conspiracy of various constraints interacting in a fixed ranking.
Thus, like Gordon (2002), our aim is to not to thoroughly evaluate the evidence for feet, but
instead to give an analysis that captures the pattern.

Finally, a potential weakness of this analysis is the need for the licensing structure only(x)
to identify the initial syllable in mono- and di-syllabic forms. While the use of this structure
is somewhat stipulative, treating mono- and di-syllabic forms differently is unavoidable. As
noted by Halle and Idsardi (2000), both the OT analysis in Kager (1999) and the rule-based
analysis of Hayes (1995) require additional machinery that refers specifically to mono- and
di-syllabic forms.10 In Kager (1999)’s analysis, the ranking Ft-Bin � Dep-IO motivates
lengthening in bisyllabic words, whereas the separate ranking Uneven-Iamb � Dep-IO mo-
tivates lengthening in longer words (p. 160). In Hayes’s rule-based analysis, an additional
rule is required, as pointed out by Kager (1999): “When the entire metrical domain is a
single light syllable, assign (L) to it” (p. 149, (17), Step 4). Thus, in its treatment of short
forms, this BMRS analysis is not significantly different from other analyses.

10It is possible to divide only(x) into the slightly more universal licensing structures 1σ(x) identifying
monosyllables and 2σ-first(x) identifying only the initial syllable in di-syllabic words. However, to simplify
the notation, we collapse them here.
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4.2 Elsewhere Condition effects

The hierarchy of structures in a BMRS definition admits a characterization not unlike
Pān. ini’s Theorem on Constraint-ranking in OT (Prince and Smolensky, 2004; Baković, 2006)
from which Elsewhere Condition (EC; Kiparsky, 1973) effects can be derived.11 We state
this characterization as the Strict Substructure Ordering Principle, or SSOP, given in (27).

(27) The Strict Substructure Ordering Principle (SSOP)
For any ranking of structures in a BMRS definition, whenever STRUCTj(x) implies
STRUCTi(x) but the converse is not true (i.e., STRUCTi is a strict substructure of
STRUCTj), it must be the case that i < j in the order, otherwise j will never be
evaluated.

This follows directly from the logic of the if ... then ... else syntax. The structures only(x)
and initial(x) from the Hixkaryana analysis in §4.1 are illustrative. Recall the definition of
only(x), repeated in (28).

(28) only(x) = if final(x) then initial(x) else
if final(s(x)) then initial(x) else
⊥

Intuitively, this definition implies initial(x)—the initial syllable in a mono- or di-syllable
must, of course, be initial. Formally, the reader can confirm that only(x) is only true when
initial(x) is true.

The SSOP then fixes the relative ranking of only(x) and initial(x) in the BMRS definition
for Hixkaryana stress. Recall that in (23) only(x) takes priority over initial(x), as repeated
in (29a) (with irrelevant lines omitted).

(29) a. �́o(x) = if only(x) then > else

...
if initial(x) then ⊥ else ...

b.
# σ #

only(x) >
...
initial(x) >

�́o(x) >

# σ σ σ #

only(x) ⊥
...
initial(x) >

�́o(x) ⊥

If only(x) evaluates to true, then �́o(x) evaluates to >. If not, then evaluation passes
down the line, and if it reaches initial(x) and it evaluates to true, then �́o(x) evaluates to
⊥. This is illustrated in (29b), which gives the truth values for �́o(x) for the initial syllable
in a monosyllabic form and a trisyllabic form, respectively.

If the priority of the two were reversed, then only(x) would never be evaluated, because
for any x for which only(x) is true, initial(x) will be true, and if the latter takes priority it

11We thank Chris Oakden for discussion on the points in this section.
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will always be evaluated instead. This is illustrated below in (30).

(30) a. �́o(x) = if initial(x) then ⊥ else ...
...
if only(x) then > else

b.
# σ #

initial(x) >
...
only(x) >

�́o(x) ⊥

# σ σ σ #

initial(x) >
...
only(x) ⊥

�́o(x) ⊥

Note that now the truth value for �́o(x) in both of the examples in (30b) is ⊥, because even
though the initial syllable in the disyllable satisfies only(x), initial(x) preempts it. In other
words, only(x) might as well not be present in the definition at all. This illustrates how the
SSOP fixes the order in (29) as the only one in which only(x) can play a role in the grammar.

To see how the SSOP predicts EC effects, we turn to stress and length in English. As
discussed by Baković (2006) (following Chomsky and Halle, 1968; Myers, 1987; Halle, 1995),
long and short vowels in English are in complementary distribution in stressed syllables
in certain metrical configurations. In general, the stressed vowel in a binary foot is short.
Following the above authors, we likewise assume the final suffixed syllables in these forms
are extrametrical.

(31) a. (nătu)ral (cf. nāture)
b. di(v̆ıni)ty (cf. div̄ıne)
c. (rădi)cal

However, when stressed [−high] vowels in this configuration are also followed by an [i]
vowel in hiatus, they are long instead of short.

(32) a. re(mēdi)al *re(mĕdi)al
b. co(lōni)al *co(lŏni)al
c. (rādi)al *(rădi)al

Thus, stressed vowels in binary feet are long when followed by an [iV] sequence, and short
elsewhere. Because this generalization has a “do X unless the more specific situation in Y
holds” flavor, rule-based analyses have argued for the disjunctive ordering of rules according
to the EC. The EC is discussed more below, but first we will give a BMRS analysis of these
facts.

We assume a predicate brhd(x) that is true exactly when x is the head of a binary
branching foot. To identify the environment for lengthening we define the following addi-
tional predicate brhd&[−hi]CiV(x).

(33) brhd&[−hi]CiV(x) = if brhd(x) then [−hi]CiV(x) else ⊥

The BMRS definition for the feature [±long] in English would thus be as follows.
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(34) [long]o(x) = if brhd&[−hi]CiV(x) then > else

if brhd(x) then ⊥ else

[long](x)

This definition involves one licensing structure, brhd&[−hi]CiV(x) (the lengthening en-
vironment), ordered before a blocking structure brhd(x) (the shortening environment). Note
that this order is fixed by the SSOP: brhd&[−hi]CiV(x) implies bhrd(x), so the former must
take priority over the latter. (34) is evaluated as shown in (35), with the examples radical
and radial.

(35) a.
(radi)cal

brhd&[−hi]CiV(x) ⊥
brhd(x) >

[long]o(x) ⊥
Output: rădical

b.
(radi)al

brhd&[−hi]CiV(x) >
brhd(x)

[long]o(x) >
Output: rādial

As illustrated in (35a), the stressed vowel in radical fails brhd&[−hi]CiV(x), so evaluation
passes along to bhrd(x). This evaluates to >, and since bhrd(x) is a blocking structure for
[long]o(x), the entire predicate evaluates to true. This produces the correct output rădical.
In contrast, the stressed vowel in radial satisfies brhd&[−hi]CiV(x). As this is a licensing
structure for [long]o(x), the predicate immediately evaluates to >, skipping the evaluation
of brhd(x). This produces the correct output rādial.

Note that if the order of the two structures were reversed, the licensing structure brhd&[−hi]CiV(x)
would never have an effect. This is illustrated below in (36).

(36) a.
(radi)cal

brhd(x) >
brhd&[−hi]CiV(x)

[long]o(x) ⊥
Output: rădical

b.
(radi)al

brhd(x) >
brhd&[−hi]CiV(x)

[long]o(x) ⊥
Output: ∗ rădial

Exactly as in the example with only(x) and initial(x), bhrd(x) is a strict substructure of
brhd&[−hi]CiV(x); logically, the latter implies the former. This means that for any element
for which brhd&[−hi]CiV(x) is true, so is bhrd(x). Thus, if we were to order bhrd(x) before
brhd&[−hi]CiV(x), the latter would never be evaluated. In effect, as predicted by the SSOP,
brhd&[−hi]CiV(x) is extraneous in the grammar.

Note under the BMRS analysis the lengthening and shortening processes behave dis-
junctively: each vowel is either lengthened or shortened, depending on which structure it
satisfies. This is not due to any independent principle, but is simply a result of how the
grammar operates.

To contrast this with a rule-based analysis, we briefly discuss how derivational analy-
ses invoke the EC to affect this disjunctive behavior. The below formulations of rules for
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lengthening and shortening are essentially those of Kenstowicz (1994, p. 218, (36)).

(37) English lengthening and shortening (Kenstowicz, 1994)

a. Shortening

V → V̆ /

( σ́ σ)

b. Lengthening

V → V̄ / C i V

( σ́ σ)

As Kenstowicz (1994) argues, (see also Halle 1995; Halle and Idsardi 1998), ordering these
rules serially is problematic. Ordering lengthening before shortening produces the wrong
forms (shortening would undo any changes made by lengthening; see (38a) below), and
ordering shortening before lengthening produces a “Duke of York” effect in which shortening
makes a change that is then undone (see (38b) below; and see Halle and Idsardi (1998) for
discussion).

(38) Non-disjunctive ordering of shortening and lengthening
a. /radical/ /radial/

Length. — (rādi)al
Short. (rădi)cal (rădi)al

Output rădical *rădial

b. /radical/ /radial/

Short. (rădi)cal (rădi)al
Length. — (rādi)al

Output rădical rādial

Instead, Kenstowicz (1994) notes, the structural description of the lengthening rule in
(37b) is strictly more specific than that of (37a). This is exactly the situation in which the
EC states that shortening and lengthening should be disjunctively ordered, with lengthening
(37b) applying in the specific situations in which its environment is met, and shortening
(37a) elsewhere. The derivations in (39) illustrate.

(39) /radical/ /radial/

Shortening (rădi)cal Blocked by EC
Lengthening Blocked by EC (rādi)al

Output rădical rādial

This produces the correct forms. However, as pointed out by Baković (2006), the EC is
an external principle independent of the operation of the SPE rule system. In other words,
we must stipulate the additional mechanism of the EC in order to obtain a satisfactory
analysis of “do X unless Y” generalizations like shortening and lengthening in English. With
BMRSs, this disjunctive behavior instead falls out of how the grammars are evaluated.
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4.3 The typology of NC
˚

effects

Our third case study is the well-known typology of NC
˚

effects, in which different languages
apply different repair strategies to avoid a sequence of a nasal followed by a voiceless conso-
nant. The separation of markedness and faithfulness in OT grammars captures the gener-
alization missed in rule-based grammars, which is that the single markedness constraint in
(40) is responsible for the diverse set of repairs.

(40) *NC
˚No nasal/voiceless obstruent sequences (Pater, 2004, p. 273, (3))

Pater (2004) demonstrates how the typology of repairs is captured through permutations of
ranking various faithfulness constraints with *NC

˚
. In rule-based analyses, each language has

its own rule (depending on the chosen repair) and this set of rules just happens to share a
structural description.

In this section we demonstrate how the licensing and blocking structures in a BMRS anal-
ysis handle the conspiratorial nature of a constraint like *NC

˚
. As in the previous analyses,

the placement of these structures is constrained by the inherent logic of BMRSs.
We first establish nasal place assimilation, which plays a role in all of these grammars.

These definitions hold for all of the analyses in this subsection.12

(41) [lab]o(x) = if [nas][lab](x) then > else [lab](x)

[cor]o(x) = if [nas][cor](x) then > else [cor](x)

[dor]o(x) = if [nas][dor](x) then > else [dor](x)

Next we define the following two predicates, which identify the two segments in a NC
˚

struc-
ture. The reason two predicates are needed is because the range of repair strategies vary in
whether they target the nasal or the obstruent in these structures.

(42) a. NC
˚

(x) = if [nas](x) then

[
−son
−voi

]
(s(x)) else ⊥

b. NC
˚

(x) = if

[
−son
−voi

]
(x) then [nas](p(x)) else ⊥

We can then examine the various effects of these predicates as licensing and blocking struc-
tures for the definitions of the predicates out(x), [nas]o(x), and [voi]o(x) determining whether
x is output, nasal, and voiced, respectively. Note that here, we have defined NC

˚
(x) and

NC
˚

(x) as input structures, instead of output structures like Pater’s *NC
˚

markedness con-

straint. It is possible to define them in terms of the output by using recursive definitions,
but for simplicity we leave them defined as input structures. Regardless, the definitions in

12A more succinct statement would be possible with a three-valued (i.e., non-Boolean) predicate [place](x)
that takes one of the values in {lab, cor, dor}:

[place](x) = if [nas]C(x) then [place](s(x)) else [place](x)

This deviates slightly from the overall structure we established in §3.1, in that x takes on the value of
[place](s(x)) rather than a boolean value. However, this is still valid BMRS syntax.
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(42) capture all of the relevant generalizations.
We will show that, like Pater (2004)’s factorial typology of *NC

˚
and various faithfulness

constraints, this describes the typology of nasal-voiceless consonant repairs. Furthermore,
the following principle, similar to the SSOP in the previous section, governs where these
structures can be placed. We will use this principle to explain why certain logically possible
repairs do not occur.

(43) Meaningful Structures in BMRSs
We consider BMRS transductions whose licensing and blocking structures are mean-
ingful. In a BMRS of the structure

if X then B else Y

X is meaningful iff neither of the following conditions holds. B is > (i.e., X is a
licensing structure) and X implies Y , or B is ⊥ (i.e., X is a blocking structure) and
X implies ¬Y .

Here, X implies Y means that whenever X is true, Y is true. For example, the default
for out(x) is >. Thus, unless some other blocking structure intervenes in the order, using
either NC

˚
(x) or NC

˚
(x) as a licensing structure is not meaningful, because out(x) in this

case would be evaluated to > anyway. To see this, in the definition of out(x) in (44a),
NC

˚
(x) is a licensing structure. However, it also implies >—whenever NC

˚
(x) is true, > is

true (somewhat vacuously, as > is always true). Therefore by (43) NC
˚

(x) is not meaningful.

(44) a. out(x) = if NC
˚

(x) then > else

>
b. out(x) = if NC

˚
(x) then > else

if [nas](x) then ⊥ else

>

However, if we add another intervening blocking structure, such as [nas](x) in (44b), then
NC

˚
(x) is now meaningful, because it does not imply all of if [nas](x) then ⊥ else >.
Thus, NC

˚
(x) on its own cannot function as a licensing structure for out(x), and for

similar reasons neither can NC
˚

(x). However, they can act as a blocking structure for out(x),

which results in deletion. Deletion of the consonant results from using NC
˚

(x). This is

attested in Indonesian (Onn, 1980; Herbert, 1986; Pater, 2004), in which the prefix /m@N/
causes alternations in roots beginning with a voiceless obstruent. As shown below, this initial
obstruent deletes and the nasal takes on its place of articulation.13

13As noted in Pater (2004), this alternation only occurs at morpheme boundaries; for example /@mpat/
‘four’ surfaces faithfully as [@mpat], not as *[@mat]. Root faithfulness in this case can be implemented by
defining a structure rt-internal(x) and assigning it as a higher-ranked licensing structure for out(x) as
below.

i. rt-internal(x) = if +(p(x)) then ⊥ else root(x)

ii. out(x) = if rt-internal(x) then > else

if NC
˚

then ⊥ else

>
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(45) Indonesian nasal substitution (Onn, 1980)
/m@Npilih/ 7→ [m@milih], ‘to choose, vote’

(46) out(x) = if NC
˚

(x) then ⊥ else >
[nas]o(x) = [nas](x)
[voi]o(x) = [voi](x)

Note that the place assimilation is accomplished through the definitions in (41). This applies
even in the case of deletion of the consonant because they are defined in terms of the input.
Note also that this analysis is similar to the derivational analysis in which both assimilation
and deletion occur (as in, e.g., Onn 1980), rather than Pater (2004)’s Linearity-based fusion
analysis. This is an artifact of our abstraction away from changes to the order of segments,
though see below for arguments against this explanation for Indonesian. Furthermore, this
analysis does not occur in “two steps” as Pater points out (p. 272) of analyses like that of
Onn—the BMRS is a description of a single mapping from input to output.

Deletion of the nasal instead is achieved by using NC
˚

(x) as a blocking structure for
out(x). This is attested in, for example, Swahili (Choti, 2015).

(47) Nasal deletion in Swahili (Choti, 2015)
/Nbaya/ 7→ [mbaya] ‘Class 9/10-bad’
/Nkubwa/ 7→ [kubwa] ‘Class 9/10-big’

(48) out(x) = if NC
˚

(x) then ⊥ else >
[nas]o(x) = [nas](x)
[voi]o(x) = [voi](x)

Changes to voicing and nasality then result from using NC
˚

(x) or NC
˚

(x) as licensing or

blocking structures for [voi]o(x) and [nas]o(x), respectively. We will go through these various
options in turn.

First, when NC
˚

(x) appears as a licensing structure in [voi]o(x), as in (49), the result is

postnasal voicing. This occurs in Puyo Pongo Quechua (Orr, 1962), as shown in (50).

(49) out(x) = >
[nas]o(x) = [nas](x)
[voi]o(x) = if NC

˚
(x) then > else

[voi](x)

(50) Puyo Pungo Quechua post-nasal voicing (Orr, 1962)
/kampa/ 7→ [kamba]

NC
˚

(x) cannot, however, serve as a blocking structure for [voi]o(x), because it would not be

meaningful according to definition (43). This is because NC
˚

(x) identifies a voiceless segment

and therefore it does imply ¬[voi](x).
We now consider NC

˚
(x) as a licensing structure for [voi]o(x). First we recognize that

in most languages, nasality implies voicing. This can be captured by adding [nas](x) as a
licensing structure for the definition of [voi]o(x):

Above, +(p(x)) indicates that x follows a morpheme boundary, and root(x) indicates that x is in a root.
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(51) [voi]o(x) = if [nas]o(x) then > else

[voi](x)

Given (51), NC
˚

(x) is either not meaningful as a licensing structure or it violates the SSOP.

(52) a. [voi]o(x) = if NC
˚

(x) then > else

if [nas]o(x) then > else

[voi](x)

b. [voi]o(x) = if [nas]o(x) then > else

if NC
˚

(x) then > else

[voi](x)

Consider first (52a). Whenever NC
˚

(x) is true, [nas]o(x) is also true (unless it is blocked in
that exact configuration). Therefore, NC

˚
(x) implies if [nas]o(x) then > else [voi](x), in

violation of (43). So (52a) is excluded by being meaningless. Likewise, the reverse ordering
in (52b) violates the SSOP, because [nas](x) is a proper substructure of NC

˚
(x). Thus, either

ordering of NC
˚

(x) and [nas](x) as licensing structures is forbidden by these two principles.
However, NC

˚
(x) can appear as a blocking structure for [voi]o(x), causing devoicing of the

nasal.

(53) Nasal devoicing
/ampa/ 7→ [am

˚
pa]

(54) out(x) = >
[nas]o(x) = [nas](x)
[voi]o(x) = if NC

˚
(x) then ⊥ else [voi](x)

Whether this repair is attested is controversial, as noted by Pater (p. 285, fn. 1). Herbert
(1986) cites Ndonga (Viljoen and Amakali, 1978) and Pokomo (Hinnebusch, 1975) as having
nasal devoicing in this context, though Huffman and Hinnebusch (1998) argue that this is a
phonetic effect in Pokomo.

Finally, we consider NC
˚

(x) and NC
˚

(x) as licensing and blocking structures for [nas]o(x).

As a licensing structure for [nas]o(x), NC
˚

(x) predicts nasalization of the obstruent. This

occurs in Konjo (Friberg and Friberg, 1991, pp. 84–86) as shown in (55) and (56).

(55) Nasalization in Konjo (Friberg and Friberg, 1991)
/aNpinahaN/ 7→ [@mminahaN] ‘to follow’
/aNkanre/ 7→ [@NNanre] ‘to eat’

(56) out(x) = >
[nas]o(x) = if NC

˚
(x) then > else

[nas](x)
[voi]o(x) = if [nas]o(x) then > else

[voi](x)

Note that the definition of [voi]o(x) includes the fact that nasality implies voicing, producing
a voiced nasal.

As a blocking structure for [nas]o(x), NC
˚

(x) prevents a voiceless obstruent from nasal-
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izing. On its face, this seems redundant, as obstruents are typically not nasal (though see
Durvasula 2010). This implication can be captured by using [−son](x) as a blocking structure
for [nas]o(x).

(57) a. [−son]o(x) = if [son]o(x) then ⊥ else >
b. [nas]o(x) = if [−son]o(x) then ⊥ else

[nas](x)

But, whenever this implication is present for [nas]o(x), as a blocking structure, NC
˚

(x) is

either meaningless or is blocked by the SSOP, for reasons parallel to those given above with
NC

˚
(x) when nasality implied voicing.

(58) a. [nas]o(x) = if NC
˚

(x) then ⊥ else

if [−son]o(x) then ⊥ else

[nas](x)

b. [nas]o(x) = if [−son]o(x) then ⊥ else

if NC
˚

(x) then > else

[nas](x)

Turning to NC
˚

(x), as a blocking structure for [nas]o(x) it causes denasalization, as in Mandar
(Mills, 1975).

(59) Mandar gemination (Mills, 1975)
/mantunu/ 7→ [mattunu], ‘to burn’

(60) out(x) = >
[nas]o(x) = if NC

˚
(x) then ⊥ else [nas](x)

[voi]o(x) = if [−voi](p(x)) then ⊥ else

[voi](x)

As a blocking structure for [nas]o(x) in (60), NC
˚

(x) prevents the N in a NC
˚

sequence from
surfacing as nasal. (While it is unclear from the discussion in Mills (1975) why exactly the
nasal is also devoiced, we provisionally analyze this with [−voi](p(x)) as a blocking structure
for [voi]o.)

Finally, as a licensing structure for [nas]o, NC
˚

(x) is meaningless. This is because whenever
NC

˚
(x) is true, then clearly the default predicate [nas](x) is also true.
Table 10 thus summarizes the processes predicted by varying NC

˚
(x) and NC

˚
(x) as li-

censing and blocking structures for [nas]o(x) and [voi]o(x).
The two structures can also appear in different places in the grammar. This is attested in

Umbundu, in which roots beginning with a voiceless obstruent surface with an initial, single
nasal of the same place of articulation. A systematic exception is with fricatives, which never
nasalize.

(61) Umbundu (Schadeberg, 1982)
/N+tuma/ 7→ [numa] ‘I send’
/N+seva/ 7→ [seva] ‘I cook’
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NC
˚

NC
˚

licensing blocking licensing blocking

out (meaningless) nasal deletion (meaningless) consonant deletion
(Swahili) (Indonesian)

[nas]o (meaningless) denasalization nasalization (meaningless when
(Mandar) (Konjo) [−son]→ ¬[nas])

[voi]o (meaningless nasal devoicing voicing (meaningless)
when [nas]→[voi]) (Ndonga (?) , Pokomo (?)) (Quechua)

Table 10: Summary of *NC
˚

typology

This can be captured by placing NC
˚

(x) as a blocking structure for out(x) and NC
˚

(x) as a

licensing structure for [nas], as shown below in (62).

(62) out(x) = if NC
˚

(x) then ⊥ else

>
[nas]o(x) = if [cont](x) then ⊥ else

if NC
˚

(x) then > else

[nas](x)
[voi]o(x) = [voi](x)

Thus, in /N+tuma/ ‘I send’, the initial /N/ returns ⊥ for out(x) and is thus deleted;
additionally, the /t/ is also nasalized. This yields the output [numa]. The fact that non-
continuent consonants exceptionally do not nasalize after a nasal is captured in (62) by
placing NC

˚
(x) as a licensing structure for [nas]o(x). The complication that continuants

do not nasalize is directly captured by placing the blocking structure [cont](x) above the
licensing structure NC

˚
(x). Thus, for /N-seva/ ‘I cook’, the nasal deletes, but the continuant

does not nasalize, yielding [seva].
Thus, a BMRS theory of phonology can derive typological generalizations about how a

marked structure can be repaired by varying this structure as a blocking or licensing structure
for different output predicates. Of course, as in OT, there are some “too many solutions”-
type problems. As Pater points out, epenthesis is never attested as a repair for NC

˚
sequences,

though it is predicted by his typology of constraints. While we have not here discussed how
to implement epenthesis in BMRSs, it is reasonable to suppose that once we do, BMRSs
will similarly predict this unattested repair. However, by not appealing to changing the
order of segments, the “too many solutions” problem is in some ways less stark than Pater’s
OT typology. For example, one prediction of ranking *NC

˚
above Linearity is metathesis

of the nasal and consonant: /NC
˚

/→[C
˚

N]. Other, more dramatic (and non-regular) effects
of Linearity in OT are discussed in Wilson (2003) and Lamont (2018). Further work
with BMRSs will of course have to deal with phenomena like metathesis, but there are
computational analyses of metathesis on which such analyses can be built (Chandlee and
Heinz, 2012; Chandlee, 2017). Regardless of how it is implemented, BMRSs are guaranteed
to be more constrained than OT Linearity analyses because they are subregular.
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5 Discussion

The analyses presented in the previous sections have demonstrated several of the strengths
of the BMRS formalism: namely, they can capture the interaction of multiple generaliza-
tions in a local way, which maintains the desirable computational restrictiveness of previous
implementations of subregularity but with representations that are more intuitive from a
phonological perspective. In this section we discuss a few potential extensions of this ap-
proach to phonological analysis.

The case studies presented in this paper demonstrate how BMRSs can capture multiple
generalizations directly, rather than representing each generalization separately (i.e., as a
separate rule or set of constraints) and then combining them (i.e., via ordering or ranking).
None of the examples, however, incorporated the entire phonology of the language, raising
the question of how that task might be accomplished. In other words, is a combination
operation of some type still needed, and if so, what is that operation?

The most apparent option for combining functions is function composition, as was used in
the early finite-state models of SPE grammars (Johnson, 1972; Kaplan and Kay, 1981, 1994)
and OT grammars (e.g., Karttunen, 1993; Frank and Satta, 1998; Gerdemann and Hulden,
2012; Riggle, 2004, among others). Composition can be studied as a syntactic operation
that combines two BMRS transductions such that the function described by this combined
transduction is equal to the composition of the two functions. This has yet to be worked
out in formal detail, but there is a clear path forward for doing so. Briefly, to compose two
BMRS transductions A and B, we combine both systems of equations and replace the input
feature predicates of B with the output feature predicates of A. This implements the notion
that the output of A becomes the input of B.

A second question involves long-distance interactions, such as long-distance nasal har-
mony in Kikongo (Ao, 1991; Odden, 1994; Rose and Walker, 2004). In Kikongo, a suffix
liquid becomes nasal following a nasal in the root, no matter how far to the left it is.

(63) Kikongo (Ao, 1991; Odden, 1994)
/sakid-ila/ [sakid-ila] ‘congratulate for’
/ku-toot-ila/ [ku-toot-ila] ‘to harvest for’
/ku-kin-ila/ [ku-kin-ina] ‘to dance for’
/ku-dumuk-ila/ [ku-dumuk-ina] ‘to jump for’
/ku-dumuk-is-ila/ [ku-dumuk-is-ina] ‘to make jump for’

This can be captured by the following BMRS system of equations. First, we need a
recursively defined predicate follows-[nas](x) as follows.

(64) follows-[nas](x) = if #(x) then ⊥ else

if [nas](p(x)) then > else

follows-[nas](p(x))

Note that follows-[nas](x) is explicitly recursive as it refers to itself: follows-[nas](x) is
false if x is the word boundary, true if the immediate predecessor of x is nasal, or true if
follows-[nas](x) is true of x’s predecessor. Thus, it will recurse backwards in a word unless it
finds a nasal segment (and then returns true) or finds the initial word boundary (and then
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returns false).
We can use this to define the following predicate N...L(x) which we can then use as a

licensing structure for nasality.

(65) N...L(x) = if [lat](x) then follows-[nas](x) else ⊥

The full BMRS transduction that captures this transformation would then be as follows.

(66) follows-[nas](x)= if #(x) then ⊥ else

if [nas](p(x)) then > else

follows-[nas](p(x))
[nas]o(x) = if N...L(x) then > else

[nas](x)
[lat]o(x) = if [nas]o(x) then ⊥ else

[lat](x)

Note that, because it is explicitly recursive, follows-[nas](x) must be part of the system
of equations. This is in contrast to the licensing and blocking structures defined in previous
systems of equations, which only make reference to existing input or output predicates. This
does not increase the expressive power of the BMRS formalism; these transformations are
still subsequential (Bhaskar et al., 2020). However, it does highlight an interesting difference
between output-local transformations—like the unbounded spreading definition in (16)—and
truly long-distance transformations in Kikongo, namely that there is an explicitly recursive
predicate that is part of the BMRS system of equations but is not an output predicate. This
is a point that warrants further work.

Finally, recursive schemes are flexible enough that they can be defined to hew more
closely to phonological representation. For example, we can define functions that return not
boolean values, but featural functions I = {[F](t), [G](t), ..., [Z](t),#(t)} that instead take
values in {+,−, 0}.

For example, a word-final devoicing definition would work as in (67).

(67) [voi]o(x) = if

[
−son
+voi

]
#(x) then − else [voi](x)

This states: the value of [±voi] for x in the output is − if it is a voiced obstruent,
otherwise it takes the value x has for [±voi] in the input (i.e., it is output faithfully).

However, notice that in statements of the form

if E1 then E2 else E3

the expression E1 must evaluate to a boolean value—otherwise the if/then/else logical control
cannot function. To deal with this, we can add the (standard; see, e.g. Enderton 1972) single
boolean predicate

E1 = E2

to the syntax of BMRSs, and then require (as is also standard; Moschovakis 2019) that
for a well-formed if E1 then E2 else E3 statement E1 must be boolean. Further boolean
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predicates of the form [+F] can then be defined as

[+F](x) = if [F](x) = + then > else ⊥

Note that this would change the details of the definitions of predicates such as

[
−son
+voi

]
(x),

but the BMRS definitions of maps (such as the final devoicing map in §3.1.3) would not
change at all. In other words, the logic of transductions defined with recursive schemes is
not dependent on how the user-defined predicates are defined; it remains constant as long as
the truth values of the user-defined predicates remain constant. Therefore, while considering
predicates that return feature values instead of boolean values would make the formalism
no longer boolean, it would still be monadic, and thus there would be no change in the
expressiveness of the formalism.

Extending recursive schemes to representations that explicitly include binary relations,
such as association in autosegmental representations (Goldsmith, 1976; Coleman and Local,
1991) or dominance in the prosodic hierarchy (Selkirk, 1980; Nespor and Vogel, 1986), would
necessitate relaxing the restriction to monadic predicates and functions. The consequences
of this remain to be explored; however, recent research on logical transductions in such
representations (Strother-Garcia, 2017; Koser et al., 2019; Chandlee and Jardine, 2019) can
serve as a starting point for this work.

6 Conclusion

Generative phonology, like all formal linguistic theories, aims to understand the nature of
the computations that underlie patterns in natural language. This paper has illustrated how
analyses with boolean monadic recursive schemes directly capture phonological generaliza-
tions, while adhering to results showing the computationally restrictive nature of phonolog-
ical typology. While many open questions remain, the examples in this paper demonstrate
that this formalism shows great promise as a theory of the computational nature of phono-
logical transformations.
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