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Introduction

� What is the computational complexity of nonlinear phonology?
� It appears that phonology is fundamentally regular or sub-regular (Johnson,

1972; Kaplan and Kay, 1994; Heinz and Idsardi, 2011)
� The regular classes of languages and relations are often defined from an

automata-theoretic perspective; for example, regular languages are those
definable with a finite-state acceptors

Figure 1: The Chomsky Hierarchy

� Automata-theoretic studies of segmental phonology argue that phonotactics and
processes are finite-state (Heinz, 2007; Gainor et al., 2012; Chandlee and Heinz,
2012; Heinz and Lai, 2013)

� Attempts at viewing Autosegmental Phonology (Goldsmith, 1976, henceforth
AP) from an automata-theoretic perspective are less clear: Wiebe (1992) argued
that it is necessarily non-regular; Kornai (1995) offers a linearization he claims is
finite-state, while Bird and Ellison (1994) argue otherwise, implementing AP
with special ‘synchronized’ finite-state acceptors

� When looking at the complexity of AP from a MODEL-THEORETIC (MT)
perspective, which builds models of strings using mathematical logic, it looks
regular

Autosegmental Diagrams

� The central insight of AP is that segments can interact via separate tiers, and
association relation between tiers is not necessarily one-to-one (Goldsmith, 1976)

� For example, in (1), multiple positions on the tonal tier are associated to a single
position on the segmental tier (here, assuming µ as the tonal-bearing unit)
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� In (2), it’s the other way around, with multiple positions on the segmental tier
associated to one position on the tonal tier
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� The following attempts to capture this kind of model in a MT framework to study
its properties, like Graf (2010) does for Government Phonology

Word Models

� Each tier can be represented as a WORD MODEL W = 〈W,/∗,P〉:
� W is the set of positions in the word
� /∗ is the precedence relation
� P defines which positions are occupied by which symbols in the alphabet

� Word models for the tonal (T) and segmental (Σ) tiers in (1):

WT =
〈
{0,1,2,3}WT ,{(0 /∗ 0),(0 /∗ 1),(0 /∗ 2), ...,(3 /∗ 3)}/∗ ,
{0,2}

H
,{1,3}

L

〉
WΣ =

〈
{0,1}WΣ

,{(0 /∗ 0),(0 /∗ 1),(1 /∗ 1)}/∗ ,{0,1}µ

〉 (3)

� Finally, we need an ASSOCIATION MODEL relating the two; A = 〈WT,WΣ,M〉,
where M is a relation relating positions in WT to positions in WΣ

� Association model for (1):

A =
〈
WT,WΣ,

{
(0 M 0),(1 M 1),(2 M 1),(3 M 1)

}
M

〉
(4)
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� This is similar to Bird and Klein (1990)’s approach, except 1) precedence does
not hold between tiers and 2) there is only one association relation (they have
‘association’ and ‘overlap’)

MSO

� We consider sets of models definable with MONADIC SECOND-ORDER LOGIC,
which allows us to define strings with logical operators ∧,∨,¬ (and thus→),
quantifiers ∀, and ∃, variables (x,y, ...) and sets of variables (X ,Y, ...)

� With these and /∗, we can define other relations, such as immediate precedence /
and less-than precedence /+ (see handout)

� Example: The constraint *HH (no consecutive Hs) can be defined as
(∀x) [H(x)→ (∀y) [(x / y)→¬H(y)]]

� Stringsets definable with MSO are exactly the regular languages (Büchi, 1960),
so each separate tier will be regular

� Relations between strings definable in MSO are also regular (Benedikt et al.,
2001)

Autosegmental Axioms

� The fundamental axioms of AP (Goldsmith, 1976) can thus be defined in MSO:
� Axiom 1. The no-crossing constraint.

(∀X ,x,Y,y)
[
((X M x)∧ (Y M y))→

(
(X /+ Y )↔ (x /+ y)

)]
� Axiom 2. One-to-one association (either left to right or right to left).

(∀X ,x)
[

((X M x)→ (∀y) [(y / x)→ (∃Y ) [Y M y]])∨
((X M x)→ (∀y) [(x / y)→ (∃Y ) [Y M y]])

]

AP Axioms and Complexity

� Given the extra association relation M, we cannot be guaranteed regularity
� However, Axioms 1 and 2 seem to conspire against non-regular representations
� Axiom 1 bans a representation like (6), which is an autosegmental version of the

non-regular relation {(w,wR)} (the set of strings matched with their reverse)
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� Axiom 2 bans a scenario like in (7) in which associations of two HL units spread
out from the center of a segmental tier consisting of even numbers of µs; the
yield of this would be the context-free stringset µ́nµ̀n
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(7)

� Conjecture: the linearization (yield) of any autosegmental representation that is at
least restrained by Axioms 1 and 2 will be regular

Conclusions and Further Work

� AP can be captured with MSO, just as regular stringsets and relations
� Hypothesis: Any further language-specific restrictions can be further specified

with MSO
� Can AP be captured with first order logic?
� We can explore what it is about tonal AP that makes it computationally different

from segmental AP (Jardine, 2013)
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